

Facultad de Ingeniería

Departamento de Matemáticas y Estadística

Profesor Michell A. Gómez L.

13 de Octubre de 2009.

Álgebra lineal. Período Académico 092. G-25. Segundo parcial.

Nombre _____ Código _____

1. (12 puntos) a) Verifique que A(5,1,2) pertenece al plano π que contiene las rectas

$$l_1: \frac{x-2}{-3} = \frac{y-3}{2} = \frac{z-4}{2}$$
 y $l_2: \frac{x-7}{2} = \frac{y+2}{-3} = z-3$.

b) Halle la ecuación del plano π_2 que pasa por el origen y es paralelo al plano π .

c) Determine si B(13,8,7) pertenece a la recta l que pasa por A y es perpendicular al plano π_2 .

2. (10 puntos) a) Encuentre todos los valores de λ para los cuales las columnas de la siguiente matriz son linealmente independientes.

$$A = \begin{bmatrix} \lambda^2 & 0 & 1 \\ -1 & \lambda & -2 \\ -1 & 0 & -1 \end{bmatrix}.$$

b) Para $\lambda=1$, determine el rango y la nulidad de A, así como bases para el espacio fila y el espacio nulo de A.

3. (8 puntos) Halle una base para el subespacio de \mathbb{R}^4 formado por todos los vectores de la forma (a+c,a-b,b+c,-a+b).

4. (8 puntos) Sea $S = \{t+1, t-2\}$ una base de P_1 , $\mathbf{v} = 2t-1$ y $[\mathbf{w}]_S = \begin{bmatrix} -3\\2 \end{bmatrix}$. Calcule $[\mathbf{v} + \mathbf{w}]_S$.

- 5. (12 puntos) Responda verdadero o falso justificando su respuesta.
 - a) Si $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$, entonces $\mathbf{u} \times (\mathbf{u} \mathbf{v}) = \mathbf{v} \times (\mathbf{v} + \mathbf{u})$.
 - b) El conjunto de todas las matrices simétricas de 2×2 es un subespacio de M_{22} .
 - c) Sean $\{v_1, v_2\}$ y $\{v_2, v_3\}$ bases de \mathbb{R}^2 , Entonces $\{v_1, v_3\}$ es una base de \mathbb{R}^2 .
 - d) Si A es de 5×7 y tiene 3 filas linealmente independientes, entonces A tiene 4 columnas linealmente independientes.

Opcional (5 puntos) El conjunto de los números reales positivos u con las operaciones $\mathbf{u} \oplus \mathbf{v} = \mathbf{u}\mathbf{v}$ y $c \odot \mathbf{u} = \mathbf{u}^c$ es un espacio vectorial real. ¿Cuál es el vector cero? ¿Cuál es el inverso aditivo de u? Pruebe la propiedad $(c+d) \odot \mathbf{u} = c \odot \mathbf{u} \oplus d \odot \mathbf{u}$.