Quiz # 6 Chapter 8 Suggested Answers Econometrics 06216

- Choose the **MOST CORRECT** answer
- You have 5 minutes to solve out this quiz
- 1. In the regression model $Y_i = \alpha_0 + \alpha_1 D X_1 + \alpha_2 X_1 + \varepsilon_i$, where D is a dummy variable:
 - a. The dummy modifies the slope of the regression line.
 - b. The dummy modifies the intercept with axis X of the regression line.
 - c. The dummy doesn't modify the graphic of the regression line.
 - d. The dummy rotates some degrees the regression line.
 - e. None of the above.
- 2. You have been hired to conduct an investigation about the econometrics' score for Asian and Female students. Your econometricians design the next model: $Y_i = \beta_0 + \beta_1 D_1 + \beta_2 D_2 + \varepsilon_i$, where D₁ takes the value of 1 if it's Asian and 0 otherwise, and D₂ takes the value of 1 if it's female and 0 otherwise. The model does allow you to:
 - a. Determine the ceteris paribus difference in the average score for an Asian.
 - b. Determine the ceteris paribus marginal change for a female.
 - c. Determine the ceteris paribus difference in the average score for an Asian female.
 - d. a. and b. are correct.
 - e. All of the above are correct.
- 3. The expected value of a dummy variable is:
 - a. 0
 - b. 1
 - c. Some number greater than 0.
 - d. There is no expected value.
 - e. None of the above
- 4. Which one of the following problems cannot be solved with dummy variables.
 - a. Difference in econometrics' score, between man and woman.
 - b. Difference in the behavior of financial market according to the hour and day.
 - c. Difference in the preference of blacks and Caucasian for some kind of desserts.
 - d. All of the above can be solved.
 - e. None of the above can be solved.
- 5. Assume that you have certain evidence to think that the marginal change in the number of task accomplished $(Task_i)$ for one additional hour of study (Stu_i) is different for the night-time hours. Which of the following models will you use to prove this? (Suppose that D_i is zero if the study is done in the morning, afternoon, or evening)
 - a. $Task_i = \beta_0 + \beta_1 Stu_i + D_i \varepsilon_i$
 - b. $Task_i = D\beta_0 + \beta_1 D_i Stu_i + \varepsilon_i$
 - c. $Task_i = \beta_0 + \beta_1 D_i Stu_i + \beta_2 Stu_i + \varepsilon_i$
 - d. All of the above.
 - e. None of the above.