ESTUDIO DEL EFECTO DE LOS SISTEMAS POLIMÉRICOS PAM-18 K$_2$ Y PAM-18 Na$_2$ SOBRE LOS PERFILES DE DISOLUCIÓN DE COMPRIMIDOS DE AMPICILINA

PROYECTO DE GRADO

DIEGO PINEDA CAMERO

ASESOR DE INVESTIGACIÓN
CONSTAÍN HUGO SALAMANCA MEJÍA, Ph.D.

UNIVERSIDAD ICESI
FACULTAD DE CIENCIAS NATURALES
PROGRAMA DE QUÍMICA FARMACÉUTICA
SANTIAGO DE CALI, VALLE
2013
ESTUDIO DEL EFECTO DE LOS SISTEMAS POLIMÉRICOS PAM-18 K_2 Y PAM-18 Na_2 SOBRE LOS PERFILES DE DISOLUCIÓN DE COMPRIMIDOS DE AMPICILINA

DIEGO PINEDA CAMERO

TRABAJO DE GRADO PARA OPTAR POR EL TÍTULO DE QUÍMICO FARMACÉUTICO

ASESOR: CONSTAÍN HUGO SALAMANCA MEJÍA, Ph. D

UNIVERSIDAD ICESI
FACULTAD DE CIENCIAS NATURALES
PROGRAMA DE QUÍMICA FARMACÉUTICA
SANTIAGO DE CALI, VALLE
2013
CONTENIDO

LISTADO DE FIGURAS..6
LISTADO DE TABLAS..8
LISTADO DE GRÁFICAS..10
1. RESUMEN ..11
2. ABSTRACT ..12
3. INTRODUCCIÓN ...13
4. PLANTEAMIENTO DEL PROBLEMA ..15
 4.1. Justificación e importancia..15
 4.2. Marco teórico ...16
 4.2.1. Estado del arte ..16
 4.2.2. Aspectos generales de la Ampicilina ..16
 4.2.3. Estrategias para reducir el efecto de la resistencia17
 4.2.4. Polímeros anfifílicos (polielectrolitos) ...18
 4.2.5. Perfiles de disolución ...21
 4.2.6. Aporte intelectual del investigador ..22
5. OBJETIVOS ..23
 5.1. OBJETIVO GENERAL ..23
 5.2. OBJETIVOS ESPECÍFICOS ...23
6. METODOLOGÍA ..24
 6.1. PROCEDIMIENTO ...24
 6.1.1. Obtención, purificación y caracterización de los sistemas poliméricos...24
 6.1.1.1. Materiales y equipos ...24
 6.1.1.2. Obtención del sistema polimérico PAM-18 K₂24
 6.1.1.2.1. Síntesis del polímero PAM-18 K₂ ..24
 6.1.1.2.2. Purificación del polímero PAM-18 K₂ ...25
 6.1.1.3. Caracterización estructural del sistema polimérico25
 6.1.1.4. Caracterización morfológica del sistema polimérico estado sólido26
 6.1.2. Realización de los perfiles de disolución ..26
 6.1.2.1. Materiales y equipos ...26
 6.1.2.2. Preparación de los sistemas buffer ...27
6.1.2.3. Ejecución de los estudios de disolución..27
6.1.2.3.1. Estudios control ..27
6.1.2.3.2. Estudios de disolución en presencia de los sistemas poliméricos
PAM-18 Na, PAM-18 K2 y Eudragit E-100 Cl...28
6.1.3. Tratamiento y análisis de datos..28

7. CRONOGRAMA DE ACTIVIDADES ..30

8. RESULTADOS Y DISCUSIÓN..31
8.1. Caracterización estructural de los sistemas poliméricos ..31
8.2. Caracterización morfológica del estado sólido de los sistemas poliméricos32
8.3. Estudios de disolución..33
8.4. Tratamiento y análisis de datos ..38

9. IMPACTO AMBIENTAL..42

10. CONCLUSIONES ..43

11. RECOMENDACIONES ...44

12. AGRADECIMIENTOS ..45

13. REFERENCIAS BIBLIOGRÁFICAS..46

ANEXO 1: Determinación de parámetros de validación de la metodología de
cuantificación del fármaco ampicilina por espectrofotometría UV..........................48
1.1. Selectividad ..48
1.2. Linealidad ..50
1.3. Precisión ..53
1.3.1. Repetibilidad del método ..53
1.3.2. Repetibilidad del sistema ...54

ANEXO 2. Preparación de los sistemas buffer utilizados en el estudio56
1. Preparación del buffer de pH 1,2 y fuerza iónica 0,15 M. ..56
2. Preparación del buffer de pH 7,4 y fuerza iónica de 0,15 M.57

ANEXO 3: Análisis de varianzas para la comparación de los perfiles de disolución
...60

ANEXO 4. Determinación del perfil de estabilidad del fármaco ampicilina bajo las
condiciones estudiadas...62
1. Materiales y equipos ...62
2. Preparación de los sistemas buffer ..62
3. Ejecución del estudio ...62
4. Resultados del perfil de estabilidad del fármaco ampicilina bajo las condiciones estudiadas ..63
ANEXO 5. Certificado de análisis de materias primas y comprimidos comerciales de ampicilina. ..72
ANEXO 6. Datos primarios de los estudios realizados. ..76
LISTADO DE FIGURAS

Figura 1. Estructura de la Ampicilina...17
Figura 2. Estructura de las sales del poli(ácido maléico-alt-octadeceno), donde M corresponde a Sodio (Na) o Potasio (K). ..19
Figura 3. Estructura química del comonómero del Eudragit® E.20
Figura 4. Representación de la interacción electrostática del Eudragit® E con un fármaco aniónico débil, tal como la ampicilina, para la formación de un complejo de asociación iónica fármaco-polímero..20
Figura 5. Esquema general de reacción del PAM-18 para lograr la sal (PAM-18 K2), donde M corresponde a Potasio (K). ..25
Figura 6. Espectros IR de los materiales poliméricos Poli(anhidrido maléico-alt-octadeceno) (espectro superior) y la sal potásica del Poli(ácido maléico-alt-octadeceno) (espectro inferior). ...31
Figura 7. Fotografías de escaneo electrónico para el fármaco (izquierda) y los materiales poliméricos de estudio sin tratamiento (centro) y en forma de sal potásica (derecha). ..33
Figura 8. Espectros UV de los sistemas buffer pH 1,2 (izquierda) y pH 7,4 (derecha) con μ de 0,15 M en ausencia del fármaco..49
Figura 9. Espectros UV del fármaco ampicilina trihidratada en los sistemas buffer pH 1,2 (izquierda) y pH 7,4 (derecha) con μ de 0,15 M. ...49
Figura 10. Espectros UV de los sistemas buffer pH 1,2 (izquierda) y pH 7,4 (derecha) con μ de 0,15 M en ausencia del fármaco..64
Figura 11. Espectro UV de ampicilina sódica 0,6 mg/mL (izquierda) y ampicilina trihidratada 0,6 mg/mL (derecha) recién preparadas en agua destilada.............64
Figura 12. Espectro UV de ampicilina sódica 0,6 mg/mL (izquierda) y ampicilina trihidratada 0,6 mg/mL (derecha) recién preparadas en buffer pH 1,2 y μ 0,15 M. 65
Figura 13. Espectro UV de ampicilina sódica 0,6 mg/mL (izquierda) y ampicilina trihidratada 0,6 mg/mL (derecha) recién preparadas en buffer pH 7,4 y μ 0,15 M. 65
Figura 14. Espectro UV de ampicilina sódica 0,6 mg/mL (izquierda) y ampicilina trihidratada 0,6 mg/mL (derecha) en agua destilada bajo condiciones de estrés..66
Figura 15. Espectro UV de ampicilina sódica 0,6 mg/mL (izquierda) y ampicilina trihidratada 0,6 mg/mL (derecha) en buffer pH 1,2 y μ 0,15 M bajo condiciones de estrés...67
Figura 16. Espectro UV de ampicilina sódica 0,6 mg/mL (izquierda) y ampicilina trihidratada 0,6 mg/mL (derecha) en buffer pH 7,4 y μ 0,15 M bajo condiciones de estrés...67
Figura 17. Espectros UV de ampicilina sódica 0,6 mg/mL (izquierda) y ampicilina trihidratada 0,6 mg/mL (derecha) en agua destilada en función del tiempo bajo condiciones de estrés. ...68
Figura 18. Espectros UV de ampicilina sódica 0,6 mg/mL (izquierda) y ampicilina trihidratada 0,6 mg/mL (derecha) en buffer pH 1,2 y µ 0,15 M en función del tiempo bajo condiciones de estrés.

Figura 19. Espectros UV de ampicilina sódica 0,6 mg/mL (izquierda) y ampicilina trihidratada 0,6 mg/mL (derecha) en buffer pH 7,4 y µ 0,15 M en función del tiempo bajo condiciones de estrés.
LISTADO DE TABLAS

Tabla 1. Condiciones farmacopeicas para el estudio de disolución control........27
Tabla 2. Diseño experimental usado para el análisis de los perfiles de disolución. ...29
Tabla 3. Cronograma de actividades..30
Tabla 4. Resumen de resultados estadísticos para el sistema polimérico PAM-18 Na₂..38
Tabla 5. Resumen de resultados estadísticos para el sistema polimérico PAM-18 K₂..39
Tabla 6. Resumen de resultados estadísticos para el sistema polimérico Eudragit E-100 Cl...39
Tabla 7. Curvas de calibración promedio del fármaco ampicilina para la determinación de la linealidad...50
Tabla 8. Evaluación de la repetibilidad del método a diferentes medios.54
Tabla 9. Evaluación de la repetibilidad del sistema a diferentes medios..........54
Tabla 10. Condiciones de estrés utilizadas para cada fármaco, para evaluar su degradación...63
Tabla 11. Datos primarios del perfil de disolución del fármaco en el medio a pH 1,2 y fuerza iónica 0,15 M...76
Tabla 12. Datos primarios del perfil de disolución del fármaco en el medio a pH 7,4 y fuerza iónica 0,15 M...76
Tabla 13. Datos primarios del perfil de disolución del fármaco con PAM-18 Na₂ a 50% en el medio a pH 1,2 y fuerza iónica 0,15 M...77
Tabla 14. Datos primarios del perfil de disolución del fármaco con PAM-18 Na₂ a 100% en el medio a pH 1,2 y fuerza iónica 0,15 M...77
Tabla 15. Datos primarios del perfil de disolución del fármaco con PAM-18 Na₂ a 150% en el medio a pH 1,2 y fuerza iónica 0,15 M...78
Tabla 16. Datos primarios del perfil de disolución del fármaco con PAM-18 Na₂ a 50% en el medio a pH 7,4 y fuerza iónica 0,15 M...78
Tabla 17. Datos primarios del perfil de disolución del fármaco con PAM-18 Na₂ a 100% en el medio a pH 7,4 y fuerza iónica 0,15 M...78
Tabla 18. Datos primarios del perfil de disolución del fármaco con PAM-18 Na₂ a 150% en el medio a pH 7,4 y fuerza iónica 0,15 M...79
Tabla 19. Datos primarios del perfil de disolución del fármaco con PAM-18 K₂ a 50% en el medio a pH 1,2 y fuerza iónica 0,15 M...80
Tabla 20. Datos primarios del perfil de disolución del fármaco con PAM-18 K₂ a 100% en el medio a pH 1,2 y fuerza iónica 0,15 M...80
Tabla 21. Datos primarios del perfil de disolución del fármaco con PAM-18 K₂ a 150% en el medio a pH 1,2 y fuerza iónica 0,15 M...81
Tabla 22. Datos primarios del perfil de disolución del fármaco con PAM-18 K₂ a 50% en el medio a pH 7,4 y fuerza iónica 0,15 M...81
Tabla 23. Datos primarios del perfil de disolución del fármaco con PAM-18 K2 a 100% en el medio a pH 7,4 y fuerza iónica 0,15 M. ...82
Tabla 24. Datos primarios del perfil de disolución del fármaco con PAM-18 K2 a 150% en el medio a pH 7,4 y fuerza iónica 0,15 M. ...82
Tabla 25. Datos primarios del perfil de disolución del fármaco con Eudragit E-100 Cl a 50% en el medio a pH 1,2 y fuerza iónica 0,15 M. ...83
Tabla 26. Datos primarios del perfil de disolución del fármaco con Eudragit E-100 Cl a 100% en el medio a pH 1,2 y fuerza iónica 0,15 M. ...83
Tabla 27. Datos primarios del perfil de disolución del fármaco con Eudragit E-100 Cl a 150% en el medio a pH 1,2 y fuerza iónica 0,15 M. ...84
Tabla 28. Datos primarios del perfil de disolución del fármaco con Eudragit E-100 Cl a 50% en el medio a pH 7,4 y fuerza iónica 0,15 M. ...84
Tabla 29. Datos primarios del perfil de disolución del fármaco con Eudragit E-100 Cl a 100% en el medio a pH 1,2 y fuerza iónica 0,15 M. ...85
LISTADO DE GRÁFICAS

Gráfica 1. Perfil de disolución promedio para ampicilina trihidratada a pH 1,2 y fuerza iónica de 0,15 M en ausencia de material polimérico. ..33
Gráfica 2. Perfil de disolución promedio para ampicilina trihidratada a pH 7,4 y fuerza iónica de 0,15 M en ausencia de material polimérico. ..34
Gráfica 3. Perfiles de disolución promedio para ampicilina trihidratada a pH 1,2 y fuerza iónica de 0,15 M en presencia de material polimérico PAM-18 Na2 a las proporciones estudiadas. (◊: perfil control, □: Perfil con polímero al 50%; Δ: perfil con polímero al 100%, X: perfil con polímero al 150%). ..34
Gráfica 4. Perfiles de disolución promedio para ampicilina trihidratada a pH 7,4 y fuerza iónica de 0,15 M en presencia de material polimérico PAM-18 Na2 a las proporciones estudiadas. (◊: perfil control, □: Perfil con polímero al 50%; Δ: perfil con polímero al 100%, X: perfil con polímero al 150%)). ..35
Gráfica 5. Perfiles de disolución promedio para ampicilina trihidratada a pH 1,2 y fuerza iónica de 0,15 M en presencia de material polimérico PAM-18 K2 a las proporciones estudiadas. (◊: perfil control, Δ: Perfil con polímero al 50%; X: perfil con polímero al 100%, □: perfil con polímero al 150%)). ..36
Gráfica 6. Perfiles de disolución promedio para ampicilina trihidratada a pH 7,4 y fuerza iónica de 0,15 M en presencia de material polimérico PAM-18 K2 a las proporciones estudiadas. (◊: perfil control, Δ: Perfil con polímero al 50%; *: perfil con polímero al 100%, □: perfil con polímero al 150%)). ..36
Gráfica 7. Perfiles de disolución promedio para ampicilina trihidratada a pH 1,2 y fuerza iónica de 0,15 M en presencia de material polimérico Eudragit E-100 Cl a las proporciones estudiadas. (◊: perfil control, Δ: Perfil con polímero al 50%; □: perfil con polímero al 100%; X: perfil con polímero al 150%)). ..37
Gráfica 8. Perfiles de disolución promedio para ampicilina trihidratada a pH 7,4 y fuerza iónica de 0,15 M en presencia de material polimérico Eudragit E-100 Cl a las proporciones estudiadas. (◊: perfil control, □: Perfil con polímero al 50%; Δ: perfil con polímero al 100%)). ..38
Gráfica 9. Curva de calibración promedio obtenida para el fármaco ampicilina en agua destilada..38
Gráfica 10. Curva de calibración promedio obtenida para el fármaco ampicilina en buffer de pH 1,2..51
Gráfica 11. Curva de calibración promedio obtenida para el fármaco ampicilina en buffer de pH 7,4. ..52
1. RESUMEN

El presente trabajo de grado hace parte de un proyecto de investigación con una mayor amplitud, el cual se encuentra enfocado en la caracterización de las propiedades fisicoquímicas en solución acuosa de materiales poliméricos con características anfílicas, con el fin de evaluar su potencialidad como novedosas matrices farmacéuticas que disminuyan la biodegradabilidad de fármacos beta-lactámicos. Específicamente en este proyecto de grado, se evaluó la variación en los perfiles de disolución de comprimidos comerciales del fármaco beta-lactámico ampicilina en su forma trihidratada, en presencia de los materiales poliméricos sal sódica del poli(ácido maléico-alt-octadeceno) (PAM-18Na₂), sal dipotásica del poli(ácido maléico-alt-octadeceno) (PAM-18K₂) y Clorohidrato de Eudragit E-100 (Eudragit E-100 Cl) en medios a condiciones fisiológicas de pH y fuerza iónica modificados por acción de los polímeros en dispersión, con valores de pH de 1,2 y 7,4, y fuerza iónica de 0,15 M a 37°C de temperatura. Los estudios realizados abarcaron la obtención del material polimérico PAM-18K₂, mientras que los sistemas correspondientes a PAM-18Na₂ y Clorohidrato de Eudragit E-100 fueron proporcionados por el Laboratorio de Investigación en Fisicoquímica Farmacéutica de la Universidad Icesi. En adición, se realizó la determinación de parámetros de validación de la metodología analítica para la cuantificación del fármaco de estudio en cada medio a condiciones fisiológicas de pH y fuerza iónica por medio de espectrofotometría UV. Por otro lado, se evaluaron los perfiles de disolución para comprimidos de ampicilina trihidratada en ausencia y presencia de los materiales poliméricos. Para ello, se siguieron metodologías de disolución previamente establecidas en monografías compiladas en la farmacopea USP 35-NF 30 (2012), y se compararon con respecto al área bajo la curva (AUC). Para esto, se realizó un análisis estadístico para determinar si hay un efecto en la disolución del fármaco según un diseño experimental, en el cual se incluyeron como factores la presencia/ausencia del material, la proporción utilizada y el pH. Los resultados mostraron que hay un efecto significativo en la disolución del fármaco en presencia de los sistemas PAM-18 Na₂ y Clorohidrato de Eudragit E-100, que también se favorece con respecto al pH, mientras que el PAM-18K₂ no presentó significancia. En los tres casos la proporción utilizada no reporta influencia significativa. Estos resultados favorecen la hipótesis inicial de que la presencia de los sistemas poliméricos tiene un efecto sobre la disolución de principios activos, y abre la puerta a futuras investigaciones sobre el tema.

Palabras clave: Ampicilina trihidratada, sal sódica del poli(ácido maléico-alt-octadeceno), sal dipotásica del poli(ácido maléico-alt-octadeceno), Clorohidrato de Eudragit E-100, perfil de disolución, área bajo la curva.
2. ABSTRACT

The present grade project is part of an investigation work with a bigger scope, which is focused in the research of the characterization of physicochemical properties in aqueous solutions of polymer materials with amphiphilic characteristics, with the purpose to evaluate their potential as novel pharmaceutical matrices capable to decrease the biodegradability of betalactamic drugs. Specifically, in this grade project, the variation in dissolution profiles of commercial tablets of the betalactamic drug ampicillin in its trihydrate form was evaluated, in presence of the polymer materials PAM-18Na₂, PAM-18 K₂ and Eudragit E-100 Chloride in media with physiologic conditions of pH and ionic strength modified by action from the polymeric systems in dispersion, with pH values of 1,2 and 7,4 and ionic strength of 0,15 M in a temperature of 37°C. The studies included obtaining of the polymer material PAM-18 K₂, while the systems corresponding to PAM-18Na₂ and Eudragit E-100 Chloride were provided by the Research Lab in Pharmaceutical Physical Chemistry of Icesi University. In addition, the determination of validation parameters for the analytic methodology for drug quantification in every used medium with UV spectroscometry was determined. In the other side, the dissolution profiles for ampicillin trihydrate tablets in absence and in presence of the polymer materials were evaluated. For it, dissolution methodologies previously established in the compiled monographs in the USP 35-NF 30 (2012) were followed and these profiles were compared regarding the area under the curve (AUC). For this, a statistical analysis was performed with a design of experiments to determine if there is a significant effect in the drug dissolution. In this design, the factors used are the absence/presence of the polymer, the used proportion and pH. The results shown that there is a significant effect in the drug dissolution in presence of systems PAM-18Na₂ and Eudragit E-100 Cl, also favored with pH, while the PAM-18 K₂ did not have significance. In all three cases, the used proportion did not report a significant influence. These results favored the initial hypothesis that the presence of the polymer systems have an effect over drug dissolution, and open the door to further investigations in this topic.

Key words: Ampicillin trihydrate, disodium salt of poly(maleic acid-alt-octadecene), dipotassium salt of poly(maleic acid-alt-octadecene), Eudragit E-100 Chloride, dissolution profile, area under the curve.
3. INTRODUCCIÓN

El descubrimiento y el uso de antibióticos para tratar las infecciones de tipo bacteriano ha sido uno de los hitos más importantes en la historia de la farmacología. Sin embargo, el proceso evolutivo de las materias, además del uso inapropiado de estos medicamentos ha provocado la generación de mecanismos de resistencia por parte de los microorganismos a estos fármacos. Actualmente, se han estudiado con mucho énfasis las causas que generan la resistencia microbiana, y se están estudiando mecanismos que permitan disminuir los efectos de esta problemática sin necesidad de crear o investigar en nuevos principios activos, por lo que evaluar nuevos métodos y desarrollos galénicos se ha convertido en una herramienta clave para combatir esta situación. Sin embargo, son muy pocos los estudios que se pueden encontrar sobre estrategias que conlleven a resolver estos problemas y principalmente, desde el punto de diseño y formulación de estos medicamentos. Por otro lado, se ha encontrado una alta potencialidad de un gran número de sistemas poliméricos que podrían ser utilizados en el diseño de nuevas formas farmacéuticas, utilizadas en el tratamiento de enfermedades biorresistentes, tales como los materiales polielectrolíticos.

Los polielectrolítos, más específicamente las sales derivadas del poli-ácido maléico, en un medio acuoso, han demostrado tener un potencial para generar micro y nanoambientes que puedan actuar como reservorios de fármacos, debido a la reorganización intramolecular que sufren con el fin de disminuir las interacciones desfavorables, dejando hacia el medio los sectores hidrófilos (ionizados), y generando una especie de “micela”, o mejor, una reorganización en la cual las cadenas hidrófobas se encuentran encapsuladas, actuando como un posible reservorio para fármacos, y que, por mecanismos difusivos, se genere una liberación modificada en el organismo. Sin embargo, este tipo de polímeros deben cumplir con las características de biodegradabilidad y biocompatibilidad.

Teniendo en cuenta estos antecedentes, en el presente proyecto se buscó estudiar el comportamiento cinético de disolución de ampicilina en presencia de polímeros derivados del anhídrido maléico (PAM-18) y de Eudragit E-100 Cl, con el fin de determinar si existen variaciones en los perfiles de disolución del fármaco en presencia del polímero presente en el medio a condiciones fisiológicas de pH y fuerza iónica, y con una variación del método descrito en la farmacopea estadounidense (USP), determinando la concentración de fármaco con espectrofotometría UV, además de realizar los análisis estadísticos con base en métodos estadísticos y aplicando diseño experimental, buscando comparar los perfiles de disolución obtenidos tanto en presencia como en ausencia del material polimérico, variando la proporción utilizada y evaluando las condiciones...
fisiológicas de pH, con el fin de generar la información necesaria que indique que, en efecto, las sales poliméricas derivadas del anhídrido maléico generan fenómenos de inclusión de fármaco que puedan modificar la liberación de éste, buscando, con esta información, aportar a generar una forma farmacéutica potencial que ayude a disminuir el efecto de la resistencia a los antibióticos de tipo beta-lactamico, además de mejorar sus características biofarmacéuticas.
4. PLANTEAMIENTO DEL PROBLEMA

La generación de mecanismos de resistencia de los microorganismos ante los antibióticos está aumentando la morbi-mortalidad de las personas por infecciones bacterianas. La ampicilina (antibiótico penicilínico) representa una opción terapéutica aceptable para las personas que padecen enfermedades causadas por bacterias. Sin embargo, su efectividad ha disminuido a medida que los patógenos han desarrollado resistencia, lo que ha conllevado a la reducción de opciones farmacoterapéuticas de amplio uso y bajo costo. Debido a esto, se hace necesario buscar nuevas alternativas, tales como la síntesis de nuevos principios activos o bien el desarrollo de novedosas formas farmacéuticas inteligentes que permitan la bioprotección del fármaco o que puedan ser utilizados en terapias de farmacorresistencia.

Con el ánimo de buscar nuevos diseños de formulaciones útiles frente a este problema, se realizó un estudio correspondiente a la etapa de preformulación, buscando estudiar el comportamiento cinético de disolución de ampicilina en presencia de polímeros derivados del anhídrido maléico (PAM-18) y de Eudragit E-100, se determinaron los perfiles de disolución del fármaco en presencia del material polímerico en una matriz sólida comprimida, y con base en esto, generar la información necesaria para estudiar el comportamiento cinético de ampicilina en presencia de sales poliméricas derivadas del anhídrido maléico, buscando aportar a generar una forma farmacéutica potencial que ayude a disminuir el efecto de la resistencia a los antibióticos de tipo beta-lactámico.

4.1. Justificación e importancia

Este trabajo es un paso inicial para establecer potenciales formas farmacéuticas de ampicilina con efecto antimicrobiano adecuado, y potencialmente, con características biofarmacéuticas y de desempeño mejoradas. Tanto a nivel nacional como regional, la ampicilina es muchas veces el fármaco de elección debido a que es un antibiótico de amplio espectro, y si se logran mecanismos para recuperar su eficacia y/o velocidad en la respuesta terapéutica, se proporcionaría a la población un manejo más eficiente en el tratamiento de infecciones bacterianas.

Buscando atacar la problemática actual de la resistencia de los microorganismos a los antibióticos y las estrategias para mitigar este fenómeno, se realizó un componente experimental importante que, apoyado con literatura relacionada, busca generar resultados relevantes a la línea de investigación de la Facultad de
Ciencias Naturales: “Diseño y formulación de potenciales formas farmacéuticas de antibióticos beta-lactamicos útiles frente a microorganismos resistentes”.

4.2. Marco teórico

4.2.1. Estado del arte

Esta investigación contribuye al desarrollo de trabajos científicos interdisciplinarios, donde se combina la investigación básica y aplicada con proyecciones al desarrollo de nuevos productos farmacéuticos con mejores características farmacotécnicas, biofarmacéuticas y de estabilidad físicoquímica y biológica. La propuesta investigativa radica en evaluar la potencialidad de las sales sódica y potásica del poli(acido-alt-octadeceno), como novedosos sistemas excipientes de medicamentos. En este sentido, se espera que los polímeros anfílicos sales del poli(acido-alt-octadeceno) y clorhidrato de Eudragit E-100, que presentan la capacidad de auto-organizarse, generando nano y micro agregados hidrofóbicos en medio acuoso, puedan asociar sustratos farmacológicos por interacciones específicas con las pseudofases poliméricas; y así, puedan mejorar las características físicoquímicas de la ampicilina. Debido a estas asociaciones específicas generadas por el sistema fármaco-polimérico, se espera evidenciar su potencial aplicación como matrices farmacéuticas que mejoren las características físicoquímicas del fármaco, y con ello, produzcan un mejoramiento en diferentes procesos biofarmacéuticos, así como de bioestabilidad frente a microorganismos productores de enzimas que pueden degradar a los agentes farmacológicos, tal como sucede con los agentes farmacológicos beta-lactámicos.

4.2.2. Aspectos generales de la Ampicilina

La ampicilina corresponde a un antibiótico de tipo beta-lactamico, el cual se subdivide en otros grupos, tales como: cefalosporinas, carbapenémicos, monobactámicos, penicilinas, etc. El antibiótico en estudio, se encuentra en el subgrupo de las penicilinas, dichos antibióticos contienen un anillo beta-lactamico y un anillo de tiazolidina dentro de su estructura, los cuales forman el ácido 6-aminopenicilánico, estructura que deriva de la condensación de una molécula de valina y una de cisteína para dar lugar al doble anillo característico (Kfoury, 2003).
Los antibióticos beta-lactamicos en general, actúan inhibiendo la última etapa de la síntesis de la pared celular bacteriana. Después de unirse a las proteínas de unión a la penicilina, de la bacteria, inhiben la enzima de transpeptidación que establece puentes cruzados entre las cadenas peptídicas que están unidas al esqueleto de peptidoglucano (Moghadam, 2010).

De manera general, estos antibióticos se administran por vía oral o, en las infecciones más graves, por vía intravenosa. La ampicilina consiste en el antibiótico de primera elección frente a infecciones respiratorias, óticas, sinusales y meningitis causadas por microorganismos gramnegativos, como *Haemophilus influenzae*. Además, se emplea como tratamiento para la fiebre paratifoidea, faringitis bacteriana, gonorrea, neumonía, infecciones producidas principalmente por bacterias gram-positivas y gram-negativas como enterococos, *E. coli* y *Salmonella*. En cuanto a su distribución, se encuentra ampliamente perfundido en pulmones, hígado, riñones y piel (Rang, 2008).

4.2.3. Estrategias para reducir el efecto de la resistencia

Muchos de los esfuerzos, no sólo en los medicamentos antibióticos sino también en general de todos los principios activos, implican mejorar su solubilidad y liberación en un medio acuoso, debido a que la gran mayoría de ellos son de carácter mayormente hidrofóbico. De acuerdo con estimaciones recientes, casi el 50% de los nuevos fármacos son rechazados debido a su baja solubilidad, y por tanto, generan pobres parámetros biofarmacéuticos (en el Sistema de Clasificación Biofarmacéutica, los fármacos que pertenecen a las clases II y IV). Entonces, la solubilidad es uno de los parámetros importantes para lograr la concentración deseada de fármaco en la circulación sistémica de la respuesta farmacológica (Patil, 2011). Todo esto se constituye en un reto para la farmacia galénica, llevando al estudio de sistemas poliméricos acoplados a los fármacos para mejorar sus características de liberación en el organismo.
Aplicaciones de agrupaciones fármaco:polímero incluyen el desarrollo de nanopartículas y sistemas con diferentes materiales, como derivados de ácido málico que acoplan una cadena hidrofílica de polímero a un fármaco (Domurado, 2006), copolímeros anfílicos pegilados y tratados enzimáticamente (Pandey, 2008), nanoporos, nanopartículas de oro (Agnihotri, 2011), poliamidas y poliésteres ramificados (Sutiruengwong, 2006), poliacrilatos (Singh, 2010), entre otros materiales, de carácter anfílico o como polielectrolitos.

4.2.4. Polímeros anfílicos (polielectrolitos)

Los polielectrolitos son polímeros con grupos ionizables. En los disolventes polares tales como agua, estos grupos pueden disociarse, dejando las cargas sobre las cadenas de polímero y liberando los contraiones en la solución. Ejemplos de polielectrolitos incluyen sulfonato de poliestireno, ácido acrílico y metacrilico y sus sales, ADN y otros poliácidos y polibases. Las interacciones electrostáticas entre las cargas generan comportamientos en solución de los polielectrolitos cualitativamente diferentes de los de los polímeros no cargados (Dobrynin, 2005).

Las características que pueden variar entre ambos sistemas incluyen, por ejemplo, la presión osmótica más elevada en polielectrolitos, el cambio en la forma de dispersión del polímero en solución, la relación entre viscosidad y concentración de polímero (en polielectrolitos se vuelve proporcional entre la primera y la raíz cuadrada de la segunda, mientras que en polímeros no cargados no hay una relación definida), y la dinámica de entrecruzamiento (Dobrynin, 2005).

Más específicamente, los polielectrolitos hidrofópicamente modificados, debido a la reorganización molecular (una especie de “micela”), pueden considerarse como potenciales reservorios de fármacos, con una liberación modificada. La eficiencia de estos potenciales sistemas depende del grado de estabilidad de la “micela”, y el coeficiente de partición del fármaco en el sistema. La estabilidad de este tipo de organización depende no de la concentración como en el caso de surfactantes, sino de factores ambientales como el pH o la fuerza iónica. Es decir, estos polímeros se pueden diseñar con base en las condiciones en las cuales se favorezcan los microdominios hidrófobos (Salamanca, 2007).

En el caso de polímeros derivados de ácido maléico, como las sales del poli (ácido maléico-alt-octadeceno), se ha encontrado una variación de la conformación con respecto al pH. A valores bajos, las cadenas se compactan, mientras que a valores altos, se genera una extensión debido a la interacción repulsiva entre los grupos carboxilos ionizados. Se denominan “micelas” debido a la forma que presentan, con un interior hidrófobo rodeado por un área iónica. El interior hidrófobo es el enfoque de estos estudios, pues permite encapsular moléculas
orgánicas y mejorar su solubilidad en medio acuoso (Salamanca, 2007). Todo esto, con base en el fenómeno de complejación.

![Diagrama de Estructura de las sales del poli(ácido maléico-alt-octadeceno), donde M corresponde a Sodio (Na) o Potasio (K).](image)

La complejación se denomina al proceso de asociación entre dos o más moléculas para formar una entidad no enlazada con una estequiometría definida. Este proceso se basa en fuerzas intermoleculares de tipo débil, como fuerzas de London, enlaces de hidrógeno e interacciones hidrofóbicas. En este caso, el fenómeno de complejación aplicable es el complejo aplilado (stacking complexes), en los cuales se genera una exclusión del contacto del solvente polar del microambiente hidrofóbico, reduciendo la energía total del sistema (Patil, 2011).

Los polímeros derivados del ácido maléico (PAM-18) han demostrado, según estudios anteriores, una efectividad significativa frente a mecanismos convencionales. Resultados de otras investigaciones muestran una recuperación de la actividad farmacológica de ampicilina sobre microorganismos de *S. aureus* resistentes, pasando de 11000 unidades formadoras de colonia (UFC) a 50 UFC, cuando se encuentra en presencia del sistema polimérico, sugiriendo un efecto de bioprotección. Este efecto se puede explicar debido a que este sistema polimérico se puede auto-organizar en solución acuosa, llevando a la formación de nano o micro dominios de naturaleza hidrofóbica (complejación), donde es posible solubilizar la ampicilina, y con ello, protegerla de la exposición directa de las enzimas hidrolíticas betalactámicas; confiriéndole así una mayor estabilidad biológica.

En relación a los polímeros comerciales de tipo catiónico como el Eudragit®, existe una gran variedad de sistemas poliméricos en virtud de su peso molecular y la distribución de las unidades monoméricas que conforman la macro-estructura polimérica, de los cuales se destaca el sistema polimérico Eudragit® E-100, que
corresponde al [poli(butilmetacrilato, (2-dimet il aminoetil) metacrilato, metilmetacrilato) 1:2:1], y el cual es uno de los sistemas poliméricos de interés para nuestra investigación.

![Figura 3. Estructura química del comonómero del Eudragit® E.](image)

Estos copolímeros del Eudragit® E pueden adquirir carga cuando se encuentran en medios acuosos acidulados, formando macro-estructuras catiónicas, tales como las observadas para un macro-ion, solubles en agua, lo cual le permite generar zonas interfaciales específicas que pueden interaccionar electrostáticamente con moléculas iónicas de carga opuesta, generando así un tipo especial de complejos, denominados como complejos de asociación iónica polímero-fármaco o bien complejos de asociación electrostática polímero-fármaco.

![Figura 4. Representación de la interacción electrostática del Eudragit® E con un fármaco aniónico débil, tal como la ampicilina, para la formación de un complejo de asociación iónica fármaco-polímero.](image)

Esta característica, además de las mencionadas anteriormente y relacionadas con la biocompatibilidad, ha llevado a que el Eudragit® se esté convirtiendo en un sistema polimérico muy utilizado para modificar las características fisicoquímicas y biofarmacéuticas de una gran cantidad de agentes farmacológicos. Ejemplos
incluyen la formación de complejos entre hidrocoloides como carragenina, carboximetilcelulosa y alginato sódico y varios fármacos tranquilizantes e hipotensores (promazina, clorpromazina, reserpina, entre otros), evaluando variables como el pH, la temperatura, la fuerza iónica y el tiempo sobre la interacción presentada (Graham, 1963); la liberación in vitro e in vivo de clorpromazina a partir de tabletas constituidas por un complejo Polielectrólito-fármaco, empleando como sistema polímérico a la carboximetilcelulosa sódica y al sulfato de protamina, demostrando un control de la liberación en los estudios realizados in vitro (Jablon, 1970); la caracterización del complejo formado entre la lambda-carragenina y el diltiazem clorhidrato y evaluaron la influencia del pH y la fuerza iónica sobre la liberación del fármaco a partir del complejo, encontrando que el pH no tiene una influencia significativa sobre la liberación, mientras la fuerza iónica tiene influencia importante (Bonferoni, 2000); el estudio del mecanismo de liberación de la lidocaína a partir de un complejo carbómero-lidocaína en dispersión, demostrando que este actuaba como un reservorio que conducía a una liberación más lenta de la lidocaína, siendo la disociación del complejo el paso más lento que controlaba la velocidad de liberación (Jimenez-Kairuz, 2002); el estudio de la cinética de liberación de dos fluoroquinolonas (norfloxacina y ciprofloxacina) a partir del complejo formado entre éstas y un carbómero como polielectrólito, encontrándose una cinética de liberación que seguía un orden cero (Vilches, 2002); la interacción presentada entre el diclofenac sódico y el diclofenac dietilamino con los polímeros eudragit RL y RS en solución acuosa, frente a variables como la temperatura, el pH, la presencia de algunos tensoactivos y la fuerza iónica. Adicionalmente se realizaron estudios de disolución in vitro, del complejo formado en estado sólido en diferentes medios de disolución (presencia de surfactantes en diferentes concentraciones, buffer pH 6.8 y agua) y diferentes condiciones, encontrándose una dependencia de las interacciones entre el fármaco y el polímero con la temperatura, la fuerza iónica y la naturaleza de los tensoactivos (Khalil, 1999); y la interacción entre el Eudragit® E y siete fármacos, entre los que figuran el diclofenac sódico. Para el diclofenac sódico, fue determinada la distribución de especies, presentando un porcentaje de condensación del contraión del 97.9 %. Los ensayos de liberación a partir del complejo en dispersión fueron realizados con los ácidos salicílico y benzoico, encontrando una mayor liberación cuando el medio receptor era una solución de NaCl, en comparación con el agua (Quinteros, 2008).

4.2.5. Perfiles de disolución

Los perfiles de disolución son ensayos in vitro que permiten evaluar y/o predecir características de liberación de productos farmacéuticos como cápsulas o tabletas en sistemas in vivo. Estos experimentos se realizan debido a que a menudo no es posible medir la disolución in vivo, por lo que esta herramienta se constituye en una determinación indirecta de la concentración plasmática en función del tiempo.
Existen teorías y aproximaciones cinéticas que evalúan la cantidad de compuesto activo disuelto en función del tiempo. Sin embargo, factores como el tipo de fármaco, sus formas polimórficas, solubilidad, cristalinidad y cantidad en la forma farmacéutica pueden influenciar la cinética de liberación. Un principio activo soluble en medio acuoso incluido en una matriz se liberará principalmente por difusión, mientras que un fármaco poco soluble en agua se liberará por erosión de la matriz (Costa, 2000).

Los métodos para comparar perfiles de disolución pueden clasificarse en tres grupos: los basados en análisis de varianzas (ANOVA); los métodos dependientes de modelo, y los independientes de modelo (Yuksel, 2000). Dependiendo de las características del fármaco, de la forma farmacéutica y del análisis que se desee realizar, se escogerá la mejor forma de analizar los perfiles.

A nivel de preformulación, se realizan diversos ensayos para optimizar las propiedades tanto físicas como químicas que se consideran importantes para lograr una formulación estable, efectiva y segura. Entre estas pruebas, la determinación de la solubilidad y el perfil de disolución en varias condiciones permiten obtener información importante sobre factores biofarmacéuticos, debido a que el fármaco debe disolverse primero en el fluido gastrointestinal para poder absorberse (Nicklasson, 1985). Por tanto, conocer este tipo de propiedades y cómo se da una variación frente a la presencia de otros materiales funcionales es de gran importancia a nivel de desarrollo de nuevas formas farmacéuticas.

4.2.6. Aporte intelectual del investigador

 Debido a la problemática de la resistencia bacteriana hacia los antibióticos beta-lactámicos convencionales; este proyecto se encamina a la investigación de nuevas alternativas de recuperación de la actividad de dichos antibióticos fácilmente asequibles, donde la estrategia consiste en asociar el antibioticó ampicilina a los materiales poliméricos sal sódica del Poli(ácido maléico-alt-octadeceno), denominado como PAM-18-Na2; sal potásica del Poli(ácido maléico-alt-octadeceno), denominado como PAM-18-K2; y clorohidrato de Eudragit E-100, los cuales podrían evitar inicialmente la rápida degradación tanto fisicoquímica como enzimática de dicho fármaco, pero que además pueden interactuar con éste de forma que se alteren sus propiedades biofarmacéuticas. De esta manera, esta investigación se enmarca en obtener información fisicoquímica y biofarmacéutica referente a estudios de disolución que permitan establecer un efecto significativo en la liberación del fármaco, con el fin de que aporte a los estudios de preformulación donde se evalúe el efecto que tendrán los materiales poliméricos mencionados anteriormente, con el fin de determinar el potencial que éstos puedan poseer como matrices de liberación modificada de principios activos.
5. OBJETIVOS

5.1. OBJETIVO GENERAL

Determinar el comportamiento de disolución en medios a condiciones fisiológicas de pH y fuerza iónica, de comprimidos comerciales del fármaco ampicilina trihidratada, en ausencia y presencia de los sistemas polielectrolitos PAM-18 Na₂, PAM-18 K₂ y Eudragit E-100 Cl en forma dispersa en el medio de disolución, según los capítulos generales y la monografía de la ampicilina en la farmacopea estadounidense vigente (USP).

5.2. OBJETIVOS ESPECÍFICOS

Lograr exitosamente obtener el material polimérico Sal Potásica del poli(ácido-alt-octadeceno) por medio de las técnicas de hidrólisis, diálisis y ultrafiltración.

Determinar las condiciones de ensayo adecuadas y los parámetros de validación de cuantificación por espectroscopía UV para realizar los ensayos de disolución del fármaco.

Obtener los perfiles de disolución de los comprimidos de ampicilina con el polímero en dispersión, a las proporciones establecidas.

Establecer, con base en herramientas estadísticas, si la presencia del material polimérico impacta en el comportamiento de disolución del fármaco, así como la proporción fármaco:polímero más adecuada.

Discutir los resultados de disolución del fármaco en presencia de los sistemas poliméricos, discutiendo su potencial como herramienta de liberación modificada de fármacos.
6. METODOLOGÍA

6.1. PROCEDIMIENTO

6.1.1. Obtención, purificación y caracterización de los sistemas poliméricos

6.1.1.1. Materiales y equipos

En esta parte, el enfoque se dirigió a la obtención de la sal potásica del poli(anhídrido maléico-alt-octadeceno) (PAM-18 K₂). Los sistemas correspondientes a la sal sódica (PAM-18 Na₂) y Eudragit E-100 Cl, fueron provistos por el Laboratorio de Investigación en Fisicoquímica Farmacéutica de La Universidad Icesi. El PAM-18 K₂ fue preparado a partir del copolímero poli(anhídrido maléico-alt-octadeceno), comercializado por SIGMA-ALDRICH. Los reactivos para la preparación de los sistemas buffer poseen grado reactivo y se adquirieron de J.T. Baker (ácido clorhídrico al 37%) y de Merck (bases y sales de sodio y potasio). Las membranas de ultrafiltración son de marca SCHOTT de polietersulfona de tamaño de corte de 10000 Daltons, y las membranas de diálisis de celulosa fueron adquiridas a Sigma Chemical Co, que son capaces de retener macromoléculas con peso molecular mayor a 12000 Daltons.

Los equipos utilizados son una celda de ultrafiltración marca Amicon® modelo 8200, con capacidad de 200 mL, un liofilizador marca Eyela y un equipo infrarrojo marca Thermo Fisher Scientific Nicolet 6700, el cual contiene el software OMNIC para el tratamiento de los datos y el análisis de los espectros obtenidos, y un microscopio electrónico de barrido (SEM) marca Phenom G2.

6.1.1.2. Obtención del sistema polimérico PAM-18 K₂

6.1.1.2.1. Síntesis del polímero PAM-18 K₂

Como se mencionó anteriormente, la preparación de la sal potásica del polielectrolito de ácido maléico (PAM-18 Na₂ y PAM-18 K₂) se realizó a partir del copolímero comercial poli(anhídrido maléico-alt-octadeceno), el cual se utilizó sin ningún tratamiento o purificación. El copolímero fue hidrolizado por la adición de una solución básica en exceso de hidróxido de potasio (para obtener la sal potásica) 1 N a una temperatura de 40°C, utilizando agua destilada como solvente,
con agitación magnética constante, hasta observar una disolución completa del copolímero. Esto se llevó a cabo aproximadamente por tres días, adicionando diariamente gotas de solución acuosa de KOH 5N.

Figura 5. Esquema general de reacción del PAM-18 para lograr la sal (PAM-18 K\(_2\)), donde M corresponde a Potasio (K).

6.1.1.2.2. Purificación del polímero PAM-18 K\(_2\)

Después de completar la reacción, se realizó un proceso de preconcentración del sistema utilizando el método de ultrafiltración cada solución polimérica fue ultrafiltrada con membranas de polietersulfona con tamaño de corte de 10000 Daltons, de acuerdo al peso molecular del polímero, buscando concentrar el sistema.

Posteriormente, y con el fin de eliminar el exceso de sales en la solución, se realizó un proceso de diálisis con membranas de celulosa de corte de 12000 Daltons. El sistema se mantuvo bajo un baño de agua destilada, cambiándose periódicamente, y se siguió el proceso por medio de medidas de conductividad del agua circundante del sistema, hasta la obtención de un valor de conductividad constante, menor a 10 \(\mu\)S/cm. Finalmente, cada solución polimérica fue liofilizada en el equipo liofilizador marca Eyela, y para el cual se contrató la prestación del servicio con un laboratorio externo, permitiendo obtener las sales en estado sólido.

6.1.1.3. Caracterización estructural del sistema polimérico

Una vez obtenido el material polimérico en estado sólido se procedió a caracterizarlo por medio de espectroscopía de infrarrojo medio, donde se evaluó la variación en las señales correspondientes al grupo anhídrido que se transforma a grupos carboxilatos y ácidos carboxílicos. Para esto se empleó un espectrofotómetro FTIR marca Thermo Fisher Scientific Nicolet 6700, el cual
contiene el software OMNIC para el tratamiento de los datos y el análisis de los espectros obtenidos.

6.1.1.4. Caracterización morfológica del sistema polimérico estado sólido

Debido a que la solubilidad de los compuestos, tanto de bajo como de alto peso molecular, depende de la morfología externa que estos posean, es decir de sus hábitos cristalinos, y dado que esta especificación rara vez se reporta dentro de los parámetros de control de especificaciones de los productos, se hace necesario realizar una caracterización general de dicha propiedad, para lo cual se obtuvieron las imágenes por microscopia electrónica de barrido para los materiales de trabajo, específicamente para la ampicilina y los sistemas poliméricos. Para esto se empleó un microscopio electrónico de barrido (SEM) marca Phenom G2.

6.1.2. Realización de los perfiles de disolución

6.1.2.1. Materiales y equipos

Para este estudio se utilizaron comprimidos comerciales de ampicilina trihidratada con un contenido de principio activo de 1 g expresado como ampicilina base, provistos como donación por Tecnoquímicas S.A. (Ver certificado de Materia prima en Anexo 5). Los reactivos para la preparación de los sistemas buffer poseen grado reactivo y se adquirieron de J.T. Baker (ácido clorhídrico al 37%) y de Merck (bases y sales de sodio y potasio). La sal potásica del polielectrolito de ácido maléico (PAM-18 K_2), fue preparadas a partir del copolímero poli(anhídrido maléico-alt-octadeceno), comercializado por SIGMA-ALDRICH según como se indicó anteriormente. La sal potásica del polielectrolito de ácido maléico (PAM-18 Na_2) y la sal del Eudragit E-100 fueron provistas por el Laboratorio de Investigación en Fisicoquímica Farmacéutica de La Universidad Icesi.

Los equipos utilizados fueron un espectrofotómetro UV-Visible marca Shimadzu acoplado con una termocupla y un sistema multicelda con capacidad para seis celdas, un medidor de pH y conductividad marca SCHOTT® Instruments, un disolutor marca Hanson modelo Vision G2 Classic 6.
6.1.2.2. Preparación de los sistemas buffer

Los ensayos se llevaron a cabo en dos sistemas buffer, a un pH de 1,2 y 7,4, y con una fuerza iónica constante de 0,15 M. Se utilizó ácido clorhídrico y clorohidrato de potasio para el buffer ácido, mientras que para el buffer fisiológico se utilizaron fosfatos mono y dibásico de potasio y clorohidrato de potasio. Se siguieron las indicaciones de preparación de la farmacopea vigente (USP 35-NF 30, 2012), y se ajustó la fuerza iónica al valor requerido con clorohidrato de potasio (KCl) (Ver Anexo 2).

6.1.2.3. Ejecución de los estudios de disolución

6.1.2.3.1. Estudios control

El estudio control preliminar se realizó con las condiciones descritas en la farmacopea estadounidense vigente (USP 35-NF 30, 2012). Este estudio se ejecutó con el fin de corroborar si las tabletas estaban dentro de especificación (ver especificaciones de las tabletas de ampicilina en el Anexo 5), además de verificar el funcionamiento del equipo. Estas condiciones se resumen en la tabla 1.

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Especificación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aparato</td>
<td>Aparato 2: Paletas</td>
</tr>
<tr>
<td>Velocidad de agitación</td>
<td>100 rpm</td>
</tr>
<tr>
<td>Temperatura</td>
<td>37ºC</td>
</tr>
<tr>
<td>Medio de disolución</td>
<td>Agua</td>
</tr>
<tr>
<td>Tiempo del estudio</td>
<td>45 minutos</td>
</tr>
<tr>
<td>Criterio de aceptación (Q)</td>
<td>No menos de 75% disuelto</td>
</tr>
</tbody>
</table>

Este perfil de disolución se ejecutó tomando muestras cada 5 minutos con la cánula hasta completar el tiempo especificado, y leyendo la absorbancia de estas muestras en el espectrofotómetro UV a una longitud de onda de 256,00 nm, según lo obtenido en el estudio de validación (Para el estudio completo de parámetros de validación, ver Anexo 1; se realizó además un estudio de estabilidad del fármaco en los medios utilizados, ver Anexo 4). Se utilizaron los 6 vasos de disolución para los ensayos control.

Posteriormente, se realizaron los estudios control, es decir, sin presencia de material polimérico, para los sistemas buffer a pH 1,2 y a pH 7,4, a las mismas condiciones descritas en la tabla 1, realizando el mismo procedimiento de toma y
lectura de muestras. Los datos primarios (absorbancias) para todos los ensayos realizados se encuentran en el anexo 6.

6.1.2.3.2. Estudios de disolución en presencia de los sistemas polímericos PAM-18 Na₂, PAM-18 K₂ y Eudragit E-100 Cl

Para estos estudios, se realizó una dispersión de cada sistema polimérico a proporciones de 50%, 100% y 150% del contenido nominal de ampicilina (1 g), tanto en el sistema buffer a pH 1,2 como en el de pH 7,4, y esta dispersión polimérica se utilizó como medio de disolución para estos ensayos. Para la preparación de la disolución, se preparó el buffer a las condiciones descritas, y el material en estado sólido se dispersó por medio de un homogenizador Ultraturrax. Los estudios se realizaron a las mismas condiciones descritas en la tabla 1, realizando el mismo procedimiento de toma y lectura de muestras. Se utilizaron 3 vasos por cada ensayo.

6.1.3. Tratamiento y análisis de datos

Para determinar la cantidad de fármaco disuelto, se realizó la transformación de los datos obtenidos de absorbancia para cada tiempo muestreado, utilizando las curvas de calibración correspondientes, y expresarlos en términos porcentaje de ampicilina base, como lo indica la especificación.

Después de obtener estos porcentajes para cada vaso de disolución, se realizó un promedio aritmético, y con este valor se graficaron los perfiles de disolución en el programa Microsoft Excel, para cada proporción fármaco:polímero y para cada sistema polimérico.

Posteriormente, se organizaron los perfiles en gráficas para ver, en cada proporción con diferente polímero, y en cada polímero a diferentes proporciones, cómo es el efecto de la presencia de la matriz polimérica en la disolución del fármaco.

Por último, se realizó el cálculo del área bajo la curva (AUC) para cada perfil, y con este parámetro, se realizó un análisis de varianzas (ANOVA), por medio del programa estadístico Minitab versión 16, para establecer diferencias estadísticamente significativas que permitan concluir, que hay un efecto en la adición de las matrices poliméricas en la disolución del fármaco estudiado. Este análisis se realizó comparando cada sistema polimérico con respecto al ensayo control, teniendo en cuenta las variables presencia de polímero, proporción estudiada y pH, siguiendo el diseño experimental de la tabla 2.
Tabla 2. Diseño experimental usado para el análisis de los perfiles de disolución.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Nivel bajo (-1)</th>
<th>Nivel medio (0)</th>
<th>Nivel alto (+1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polímero</td>
<td>Ausencia</td>
<td>N/A</td>
<td>Presencia</td>
</tr>
<tr>
<td>Proporción</td>
<td>50%</td>
<td>100%</td>
<td>150%</td>
</tr>
<tr>
<td>pH</td>
<td>1,2</td>
<td>N/A</td>
<td>7,4</td>
</tr>
</tbody>
</table>

Con base en el diseño presentado, el criterio de aceptación es el estadístico F. Es decir, si el valor F calculado es mayor que el F tabulado, puede decirse, con un porcentaje de confianza (para este estudio se tiene que es 95%), que hay efecto significativo en las variables estudiadas.
7. CRONOGRAMA DE ACTIVIDADES

<table>
<thead>
<tr>
<th>Tabla 3. Cronograma de actividades.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Revisión bibliográfica</td>
<td></td>
</tr>
<tr>
<td>Obtención del material polimérico</td>
<td></td>
</tr>
<tr>
<td>Caracterización del material polimérico</td>
<td></td>
</tr>
<tr>
<td>Determinación de parámetros de validación y estabilidad</td>
<td></td>
</tr>
<tr>
<td>Estudios de disolución</td>
<td></td>
</tr>
<tr>
<td>Tratamiento de datos</td>
<td></td>
</tr>
<tr>
<td>Análisis estadístico</td>
<td></td>
</tr>
<tr>
<td>Preparación del informe</td>
<td></td>
</tr>
<tr>
<td>Entrega final</td>
<td></td>
</tr>
</tbody>
</table>

El sombreado indica la meta en meses para lograr la actividad.
8. RESULTADOS Y DISCUSIÓN

8.1. Caracterización estructural de los sistemas poliméricos

Una vez hidrolizado y purificado el material polimérico PAM-18K₂ por los procesos de diálisis y liofilización, se procedió a caracterizar dicho material polimérico en estado sólido, por medio de espectroscopía de FTIR. Para esto se obtuvieron los espectros tanto del material de partida como el del producto obtenido, tal y como se muestra a continuación en la figura 6:

Figura 6. Espectros IR de los materiales poliméricos Poli(anhídrido maléico-alt-octadeceno) (espectro superior) y la sal potásica del Poli(ácido maléico-alt-octadeceno) (espectro inferior).
A partir de los espectros IR que se muestran en el esquema anterior, se pueden observar las señales características para los grupos funcionales del material de partida y para el producto formado, tales como las bandas de 2920 y 2850 cm\(^{-1}\) correspondientes a estiramientos simétricos y asimétricos de los enlaces C-H de la cadena hidrocarbonada, los cuales se pueden corroborar además, con las señales alrededor de 1465-1466 cm\(^{-1}\), correspondiente a la torsiones CH\(_2\) tipo tijeras. Estas señales permanecen muy similares en ambos espectros, dado que la cadena lateral polimérica correspondiente al grupo octadeceno permanece sin alterarse en el proceso de hidrólisis. Sin embargo, es posible observar cambios notorios en otras señales que indican una transformación del material polimérico, tales como la desaparición de la señal a 2362 cm\(^{-1}\) en el material polimérico de partida, la cual corresponde al enlace C-O-C del anhídrido maléico que es hidrolizado. Además, se puede observar una variación en las dos señales de los grupos carbonilos del anhídrido maléico de 1778 y 1708 cm\(^{-1}\) a 1704 y 1557 cm\(^{-1}\). Finalmente, se puede observar la aparición de una banda a 3396 cm\(^{-1}\), la cual es un indicativo de la presencia de un grupo hidroxilo, proveniente de la formación de grupos carboxílicos. Esto último es un indicativo de que el proceso de ionización no es 100\%, con lo cual se pueden tener fracciones de la forma ácida e iónica del material polimérico, la cual deberá ser mejor caracterizada en futuros estudios.

8.2. Caracterización morfológica del estado sólido de los sistemas poliméricos

Como se mencionó en la parte metodológica, la caracterización de la morfología externa o del hábito cristalino, tanto para el fármaco de estudio como para los materiales poliméricos de partida y modificados, se deben realizar como parámetro fundamental de caracterización, ya que dicha condición puede variar significativamente el proceso de solubilización de dichos compuestos en medios acuosos. A continuación se muestran las micrografías de la ampicilina trihidratada utilizada, así como del poli(anhídrido maléico-alt-octadeceno) y la sal potásica del poli(ácido maléico-alt-octadeceno) obtenidas bajo las condiciones de nuestros ensayos.
De la figura anterior se aprecia que la ampicilina utilizada en nuestro estudio tiene una geometría de agujas, mientras que los materiales poliméricos poli(anhídrido maléico-alt-actadeceno) y la sal potásica del poli(ácido maléico-alt-actadeceno) presentan formas rómbicas y de placas, respectivamente.

8.3. Estudios de disolución

Se realizaron primeramente los estudios control (en ausencia de material polimérico) a los sistemas buffer seleccionados, según las condiciones descritas en la tabla 1. Las figuras 8 y 9 muestran el perfil de disolución promedio obtenido para la ampicilina trihidratada a un valor de pH de 1,2 y de 7,4 respectivamente, y fuerza iónica de 0,15 M en ausencia de material polimérico.

![Perfil de disolución promedio para ampicilina trihidratada a pH 1,2 y fuerza iónica de 0,15 M en ausencia de material polimérico.](image)
Posteriormente, se realizaron los estudios de disolución en presencia del material polimérico PAM-18 Na$_2$ a los sistemas buffer seleccionados, según las condiciones descritas en la tabla 1. Las figuras 10 y 11 muestran el perfil de disolución promedio obtenido para la ampicilina trihidratada a un valor de pH de 1,2 y de 7,4 respectivamente, y fuerza iónica de 0,15 M en presencia de PAM-18 Na$_2$ a las diferentes proporciones estudiadas.

Gráfica 2. Perfil de disolución promedio para ampicilina trihidratada a pH 7,4 y fuerza iónica de 0,15 M en ausencia de material polimérico.

Gráfica 3. Perfiles de disolución promedio para ampicilina trihidratada a pH 1,2 y fuerza iónica de 0,15 M en presencia de material polimérico PAM-18 Na$_2$ a las proporciones estudiadas. (◊: perfil control, □: Perfil con polímero al 50%; ∆: perfil con polímero al 100%, X: perfil con polímero al 150%).
Posteriormente, se realizaron los estudios de disolución en presencia del material polimérico PAM-18 K₂ a los sistemas buffer seleccionados, según las condiciones descritas en la tabla 1. Las figuras 12 y 13 muestran el perfil de disolución promedio obtenido para la ampicilina trihidratada a un valor de pH de 1,2 y de 7,4 respectivamente, y fuerza iónica de 0,15 M en presencia de PAM-18 K₂ a las diferentes proporciones estudiadas.
Gráfica 5. Perfiles de disolución promedio para ampicilina trihidratada a pH 1,2 y fuerza iónica de 0,15 M en presencia de material polimérico PAM-18 K2 a las proporciones estudiadas. (◊: perfil control, ∆: Perfil con polímero al 50%; X: perfil con polímero al 100%, □: perfil con polímero al 150%).

Gráfica 6. Perfiles de disolución promedio para ampicilina trihidratada a pH 7,4 y fuerza iónica de 0,15 M en presencia de material polimérico PAM-18 K2 a las proporciones estudiadas. (◊: perfil control, ∆: Perfil con polímero al 50%; *: perfil con polímero al 100%, □: perfil con polímero al 150%).
Adicionalmente, se realizaron los estudios de disolución en presencia del material polimérico Eudragit E-100 Cl a los sistemas buffer seleccionados, según las condiciones descritas en la tabla 1. Las figuras 14 y 15 muestran el perfil de disolución promedio obtenido para la ampicilina trihidratada a un valor de pH de 1,2 y de 7,4 respectivamente, y fuerza iónica de 0,15 M en presencia de Eudragit E-100 Cl a las diferentes proporciones estudiadas. Se observó que, a pH 7,4, se forma una incompatibilidad que forma una turbidez que se mantiene al tomar la muestra para la lectura. Por tanto, se utilizó un filtro de 0,22 µm para eliminar los sólidos dispersos. Sin embargo, se vio mucha variación en los datos, debido a la rápida saturación del filtro. Se decidió entonces no realizar el perfil a 150% de material polimérico en este pH. Para descartar alguna incompatibilidad entre la ampicilina y el polímero, se realizó en 25 mL una dispersión del material polimérico equivalente al 50% estudiado, y se adicionó ampicilina trihidratada grado materia prima, observándose que no hay turbidez en este sistema, lo que permite descartar incompatibilidad entre el principio activo y el polímero, y probablemente la turbidez se genere debido a una interacción negativa entre este último y alguno de los excipientes del comprimido.

Gráfica 7. Perfiles de disolución promedio para ampicilina trihidratada a pH 1,2 y fuerza iónica de 0,15 M en presencia de material polimérico Eudragit E-100 Cl a las proporciones estudiadas. (◊: perfil control, Δ: Perfil con polímero al 50%; □: perfil con polímero al 100%; X: perfil con polímero al 150%).
Gráfica 8. Perfiles de disolución promedio para ampicilina trihidratada a pH 7,4 y fuerza iónica de 0,15 M en presencia de material polimérico Eudragit E-100 CI a las proporciones estudiadas. (◊: perfil control, □: Perfil con polímero al 50%; ∆: perfil con polímero al 100%).

8.4. Tratamiento y análisis de datos

Se realizaron los análisis de varianza para cada polímero estudiado en el programa estadístico según los parámetros de la tabla 2, y se obtuvieron los siguientes resultados (para el análisis completo, ver Anexo 3):

Tabla 4. Resumen de resultados estadísticos para el sistema polimérico PAM-18 Na₂.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Grados de libertad</th>
<th>Valor F crítico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polímero</td>
<td>1</td>
<td>18,72-</td>
</tr>
<tr>
<td>pH</td>
<td>1</td>
<td>0,65</td>
</tr>
<tr>
<td>Proporción</td>
<td>2</td>
<td>2,78</td>
</tr>
<tr>
<td>Polímero*pH</td>
<td>1</td>
<td>9,83</td>
</tr>
<tr>
<td>Polímero*Proporción</td>
<td>2</td>
<td>2,27</td>
</tr>
<tr>
<td>pH*Proporción</td>
<td>2</td>
<td>4,76</td>
</tr>
</tbody>
</table>

Los valores F tabulados con un 95% de probabilidad, son:

\[F_{(1, 11)} = 4,844 \]

\[F_{(2, 11)} = 3,982 \]
Teniendo en cuenta el criterio de aceptación, si el valor F calculado es mayor que el F tabulado, puede decirse, con un porcentaje de confianza del 95%, que hay efecto significativo en las variables estudiadas.

Por tanto, las variables significativas obtenidas para el sistema PAM-18 Na2 son: la presencia del material polimérico, la interacción entre el pH y la presencia del polímero y la interacción entre el pH y la proporción del polímero.

Tabla 5. Resumen de resultados estadísticos para el sistema polimérico PAM-18 K$_2$.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Grados de libertad</th>
<th>Valor F crítico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polímero</td>
<td>1</td>
<td>4,01</td>
</tr>
<tr>
<td>pH</td>
<td>1</td>
<td>0,08</td>
</tr>
<tr>
<td>Proporción</td>
<td>2</td>
<td>0,16</td>
</tr>
<tr>
<td>Polímero*pH</td>
<td>1</td>
<td>1,44</td>
</tr>
<tr>
<td>Polímero*Proporción</td>
<td>2</td>
<td>2,23</td>
</tr>
<tr>
<td>pH*Proporción</td>
<td>2</td>
<td>3,57</td>
</tr>
</tbody>
</table>

Los valores F tabulados con un 95% de probabilidad, son:

\[F_{(1, 11)} = 4,844 \]

\[F_{(2, 11)} = 3,982 \]

Teniendo en cuenta el criterio de aceptación, si el valor F calculado es mayor que el F tabulado, puede decirse, con un porcentaje de confianza del 95%, que hay efecto significativo en las variables estudiadas.

Por tanto, no hay variables significativas obtenidas para el sistema PAM-18 K2.

Tabla 6. Resumen de resultados estadísticos para el sistema polimérico Eudragit E-100 Cl.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Grados de libertad</th>
<th>Valor F crítico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polímero</td>
<td>1</td>
<td>5,28</td>
</tr>
<tr>
<td>pH</td>
<td>1</td>
<td>7,25</td>
</tr>
<tr>
<td>Proporción</td>
<td>2</td>
<td>0,87</td>
</tr>
<tr>
<td>Polímero*pH</td>
<td>1</td>
<td>8,30</td>
</tr>
<tr>
<td>Polímero*Proporción</td>
<td>2</td>
<td>1,16</td>
</tr>
<tr>
<td>pH*Proporción</td>
<td>2</td>
<td>0,81</td>
</tr>
</tbody>
</table>

Los valores F tabulados con un 95% de probabilidad, son:

\[F_{(1, 11)} = 4,844 \]
$F_{(2, 11)} = 3,982$

Teniendo en cuenta el criterio de aceptación, si el valor F calculado es mayor que el F tabulado, puede decirse, con un porcentaje de confianza del 95%, que hay efecto significativo en las variables estudiadas.

Por tanto, las variables significativas obtenidas para el sistema Eudragit E-100 Cl son: la presencia del material polimérico, el pH, y la interacción entre los dos factores mencionados.

Después de realizar los estudios de disolución y el análisis estadístico correspondiente, se puede decir que se obtuvieron resultados importantes. Por un lado, y comparando entre los tres polímeros, se observó que el efecto de la presencia del PAM-18 K2 no es significativo, mientras que el PAM-18 Na2 y el Eudragit E-100 Cl sí tuvieron una influencia estadísticamente importante en el perfil de disolución de ampicilina, determinado por el área bajo la curva (AUC).

En el caso del sistema PAM-18 Na2, se obtuvo que las variables de influencia en la disolución del principio activo, son la presencia del material polimérico, la interacción entre el pH y los polímeros, y la interacción entre el pH y la proporción del polímero. Dadas las características del polímero, se esperaba que la presencia de éste ejerciera un efecto importante, debido a la formación de pseudofases hidrofóbicas o a la repulsión electrostática que pueda generarse en el medio por la alta cantidad de polímero iónico en el sistema. La interacción entre el polímero y el pH también es de esperarse, porque tanto el sistema como el fármaco son de naturaleza iónica, y van a verse afectados por los cambios de pH, por lo que, aunque el pH como tal no ejerza un efecto significativo, al agregar una variable significativa, que además depende de esta última, va a resultar en un efecto importante sobre el fenómeno estudiado.

Vale la pena aclarar que el complejo fármaco:polímero se forma en solución, debido a que las pseudofases hidrofóbicas se generan debido a una reorganización molecular de sus grupos en contacto con el solvente acuoso. Esta conformación se ve altamente favorecida en términos termodinámicos, porque se disminuyen las interacciones desfavorables con el medio. Farmacotécnicamente es útil, debido a que no es necesario hacer algún tratamiento, simplemente es una mezcla física entre los dos componentes (material polimérico y principio activo).

En el caso del sistema Eudragit E-100 Cl, se obtuvo que las variables de influencia en la disolución del principio activo, son la presencia del material polimérico, el pH, y la interacción entre los dos factores mencionados. Dadas las características del material polimérico, se esperaba que la presencia de éste ejerciera un efecto importante, debido a la formación de pseudofases hidrofóbicas o a la repulsión electrostática que pueda generarse en el medio por la alta cantidad de polímero.
iónico en el sistema. Además, de igual forma que en el material de sodio, el sistema como el fármaco son de naturaleza iónica, y van a verse afectados por los cambios de pH, por lo que, aunque el pH como tal no ejerza un efecto significativo, al agregar una variable significativa, que además depende de esta última, va a resultar en un efecto importante sobre el fenómeno estudiado.

Es de notar que en ninguno de los sistemas evaluados, la proporción del material polimérico fue una variable significativa en el rango estudiado, por lo que podría buscarse una proporción fija para seguir los estudios futuros, o buscar un rango de menor proporción que pueda otorgar resultados más concluyentes sobre esta variable.
9. IMPACTO AMBIENTAL

El estudio cinético de disolución de ampicilina en presencia de los sistemas poliméricos PAM-18 sódico, potásico y Clorohidrato de Eudragit E-100 Cl involucra, dentro de su propósito, colaborar con la salud de la población, al mejorar la disponibilidad de un fármaco antibiótico y combatir la resistencia bacteriana, lo cual genera un impacto positivo en la salud de las personas al disminuir la prevalencia de infecciones bacterianas, lo que también implicaría una reducción en costos asociados (tratamientos más cortos, menos hospitalizaciones, etc…).

Sin embargo, es importante tener en cuenta que el manejo de estos reactivos debe tomar en cuenta el destino final de los desechos que se generen, por lo cual se tiene un sistema de manejo de desechos en la Universidad Icesi, evitando que estos residuos terminen en las fuentes de agua y afecten los ecosistemas relacionados. Debido a la influencia que tienen estos compuestos en la salud pública, se realizó un pretratamiento de estos desechos por medio de la adición de ácido, buscando inactivar los antibióticos utilizados, y posteriormente se neutralizó el desecho final para posteriormente hacer la respectiva disposición final dentro de la Universidad.

Además, una consideración importante que debe tomarse es que este tipo de materiales poliméricos sean no tóxicos, biocompatibles y biodegradables. El primer término refiere a que no haya efectos secundarios en la salud al usar estas sustancias; el segundo se refiere a que los polímeros no vayan a generar una interacción desfavorable en el organismo; y el tercero tiene que ver con que el organismo pueda degradarlos y eliminarlos fácilmente. Entonces, todas estas consideraciones llevan a que este polímero sea adecuado para el desarrollo de los estudios.
10. CONCLUSIONES

Se logró exitosamente la obtención del material polimérico sal potásica del poli(acido maléico-alt-octadeceno), sin embargo se observó en los estudios de caracterización que su grado de ionización no es completo, lo que puede afectar su funcionalidad como polielectrolito.

De acuerdo a los resultados de los parámetros de validación, se puede afirmar que el método para cuantificación de ampicilina trihidratada utilizando el espectrofotómetro UV presenta una buena repetibilidad y linealidad.

El fármaco presenta inestabilidad importante en un pH ácido, y que los estudios deben realizarse bajo condiciones que permitan garantizar resultados confiables y en el rango de estabilidad de la ampicilina.

Los resultados encontrados al desarrollar la metodología, permitieron determinar que la ampicilina trihidratada es un principio activo cuya solubilidad es dependiente del pH del medio en el que se encuentre, disociándose fácilmente en pH ácido. Por tanto, este parámetro también se ve afectado con la influencia del polímero, que a su vez actúa en función del pH.

Los sistemas poliméricos PAM-18 Na2 y Eudragit E-100 Cl tienen un efecto significativo en la liberación del fármaco, y el PAM-18 K2 no tiene significancia sobre esta variable de respuesta.

Es de notar que en ninguno de los sistemas evaluados, la proporción del material polimérico fue una variable significativa en el rango estudiado, por lo que podría buscarse una proporción fija para seguir los estudios futuros, o buscar un rango de menor proporción que pueda otorgar resultados más concluyentes sobre esta variable.
11. RECOMENDACIONES

Con este trabajo, se buscó obtener información para el diseño y formulación de potenciales formas farmacéuticas de antibióticos beta-lactámicos útiles frente a microorganismos resistentes. Sin embargo, es solamente un paso inicial, que abre la puerta a futuras investigaciones.

La recomendación principal y a desarrollar en un proyecto posterior, es ejecutar un ensayo con comprimidos de ampicilina en los cuales se tenga la matriz de material polimérico, para evaluar cuál es el efecto que se puede obtener en una forma farmacéutica que utilice estos sistemas como excipientes dentro de su formulación. Incluso, puede trabajarse con los materiales poliméricos como un sistema de recubrimiento, y comparar el efecto entre los dos tipos de aplicación del polímero.

Con los resultados de caracterización, es relevante buscar un método que permita garantizar una mayor ionización de los sistemas poliméricos, que garantice su funcionalidad como polielectrolitos.

Se recomienda también, para un mejor control de las condiciones ambientales, instalar un termohigrómetro en el laboratorio, con el fin de verificar la humedad y la temperatura, factores que se ha evidenciado intervienen en la estabilidad del principio activo, y además utilizar una técnica alterna para corroborar los resultados obtenidos.
12. AGRADECIMIENTOS

A la Universidad Icesi, por estar dispuesta a desarrollar la investigación en estos nuevos sistemas y permitir por todos los medios lograr conocimientos que aporten al progreso de la comunidad.

A mi Directora de Programa Carolina Mora, a todos los profesores entre los que resalto a Oscar Barbosa, a los colaboradores y todos aquellos que han permitido, de una forma u otra, el desarrollo de este trabajo y de este servidor como profesional.

A mi tutor, Constain Salamanca, que además de esto, ha sido un amigo, un confidente y un padre en todo el proceso de ejecución del proyecto y aprendizaje como profesional.

Al grupo de investigación en fisicoquímica farmacéutica, tanto los que ya se han graduado o están en este proceso, como los que siguen en él, que fueron de gran apoyo en este proyecto.

A mis compañeros, con los que compartí momentos inimaginables, y que de cada uno pude aprender algo. A los que se transformaron en amigos, y en apoyo incondicional: Stephany Barajas, Esther Julia Marmolejo, Tatiana Lozano, Angélica Florez, Pamela Ágredo, Paola Achipiz, y a los que no nombro para no hacer más larga la lista, pero saben que han aportado en lograr esta hazaña.

A mi madre, que ha sido el pilar y la motivación más importante para enfrentar los retos que se me han puesto en el camino, y que ha formado el ser humano que soy hoy.

A Tecnoquímicas S.A., por apoyar la investigación, siempre dispuesta a colaborar con los reactivos y recursos necesarios para la ejecución de los proyectos de grado presentados.
13. REFERENCIAS BIBLIOGRÁFICAS

ANEXO 1: Determinación de parámetros de validación de la metodología de cuantificación del fármaco ampicilina por espectrofotometría UV

Con base en la técnica que se va a utilizar, se deben tener en cuenta los siguientes parámetros para la validación. Para poder realizar el análisis estipulado en este proyecto, el primer paso que debe tenerse en cuenta es la escogencia de la técnica adecuada a utilizar, según los materiales y equipos con los que se tenga disponibilidad. En este caso, la técnica utilizada es la espectrofotometría UV, debido a que es una técnica sencilla y rápida, con resultados concluyentes.

1.1. Selectividad

En este parámetro se debe garantizar que la señal del analito de interés esté libre de interferencias tanto de los solventes utilizados como de posibles productos de degradación o impurezas. Por tanto, se realizó un barrido del fármaco ampicilina entre 200,00 y 800,00 nm en los sistemas a trabajar (buffer a pH 1,2 y buffer a pH 7,4), así como de cada solvente en ausencia del analito. Con las lecturas del fármaco, se determinó la longitud de onda óptima para los ensayos.

Inicialmente se realizó un barrido espectral desde 800,00 hasta 200,00 nm del sistema buffer tanto a pH 1,2 como a pH 7,4 y con una fuerza iónica (µ) de 0,15 M, encontrándose que no se genera un máximo de absorción en las regiones de interés para ninguno de los dos sistemas.

Nota: Como se observa que entre 400,00 y 800,00 nm no hay absorción importante en ninguno de los espectros aquí mostrados, se adjunta al informe cada espectro desde 200 a 400 nm.
Para determinar el barrido de la ampicilina en la forma trihidratada, se preparó una solución de 0,6 mg/mL en los sistemas estudiados, que inmediatamente se llevó al espectrofotómetro, obteniéndose los siguientes espectros:

<table>
<thead>
<tr>
<th>Longitud de onda máxima (nm)</th>
<th>Longitud de onda máxima (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 316,00</td>
<td>1. 256,50</td>
</tr>
<tr>
<td>2. 268,00</td>
<td></td>
</tr>
<tr>
<td>3. 262,00</td>
<td></td>
</tr>
<tr>
<td>4. 256,50</td>
<td></td>
</tr>
</tbody>
</table>

Figura 9. Espectros UV del fármaco ampicilina trihidratada en los sistemas buffer pH 1,2 (izquierda) y pH 7,4 (derecha) con µ de 0,15 M.
Por tanto, se determinó que la longitud de onda óptima para realizar las lecturas es a 256 nm. Dentro del parámetro de selectividad se considera también la interferencia de productos de degradación, pero este punto se trata en la determinación del perfil de estabilidad del fármaco.

Se observó que en las condiciones estudiadas, ninguno de los sistemas buffer genera una absorción en las longitudes de onda de interés. La parte más constante del espectro se encuentra a 256,00 nm, según la tendencia de los espectros obtenidos, y no hay interferencia de posibles productos de degradación formados.

1.2. Linealidad

Para este parámetro, se realizaron curvas de calibración por triplicado, a la longitud de onda definida en la linealidad, en la región de absorbancia esperada en los ensayos desde $2,5 \times 10^{-4}$ M hasta $5,0 \times 10^{-3}$ M. Los resultados se evaluaron mediante un análisis de regresión lineal.

En la tabla se resumen las curvas de calibración promedio obtenidas del fármaco ampicilina para cada sistema solvente evaluado, además se presentan las gráficas obtenidas.

Tabla 7. Curvas de calibración promedio del fármaco ampicilina para la determinación de la linealidad.

<table>
<thead>
<tr>
<th>Concentración Molar</th>
<th>Absorbancia en Agua</th>
<th>Absorbancia en pH 1,2</th>
<th>Absorbancia en pH 7,4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2,5E-04$</td>
<td>0,070</td>
<td>0,042</td>
<td>0,070</td>
</tr>
<tr>
<td>$5,0E-04$</td>
<td>0,152</td>
<td>0,123</td>
<td>0,147</td>
</tr>
<tr>
<td>$7,5E-04$</td>
<td>0,245</td>
<td>0,212</td>
<td>0,228</td>
</tr>
<tr>
<td>$1,0E-03$</td>
<td>0,325</td>
<td>0,311</td>
<td>0,295</td>
</tr>
<tr>
<td>$2,5E-03$</td>
<td>0,840</td>
<td>0,839</td>
<td>0,738</td>
</tr>
<tr>
<td>$5,0E-03$</td>
<td>1,679</td>
<td>1,714</td>
<td>1,510</td>
</tr>
</tbody>
</table>

Gráfica 10. Curva de calibración promedio obtenida para el fármaco ampicilina en buffer de pH 1,2.

Se realizó además el análisis de regresión para determinar el parámetro de linealidad para cada sistema.

Análisis de regresión: Absorbancia en Agua vs. Concentración Molar

La ecuación de regresión es

Absorbancia en Agua = $-0.0131 + 339 \text{ Concentración Molar}$

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Coef</th>
<th>SE Coef</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constante</td>
<td>-0.013120</td>
<td>0.002548</td>
<td>-5.15</td>
<td>0.007</td>
</tr>
<tr>
<td>Concentración Molar</td>
<td>$338,972$</td>
<td>$1,085$</td>
<td>312.53</td>
<td>0.000</td>
</tr>
</tbody>
</table>

$S = 0.00440016$ $\text{R-cuad.} = 100.0\%$ $\text{R-cuad.(ajustado)} = 100.0\%$

PRESS = 0.000416597 $\text{R-cuad.(pred)} = 99.98\%$

Análisis de varianza

<table>
<thead>
<tr>
<th>Fuente</th>
<th>GL</th>
<th>SC</th>
<th>CM</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regresión</td>
<td>1</td>
<td>$1,8911$</td>
<td>$1,8911$</td>
<td>97673.63</td>
<td>0.000</td>
</tr>
<tr>
<td>Error residual</td>
<td>4</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Total</td>
<td>5</td>
<td>$1,8912$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Análisis de regresión: Absorbancia en pH 1,2 vs. Concentración Molar

La ecuación de regresión es

Absorbancia en pH 1,2 = $-0.0480 + 353 \text{ Concentración Molar}$

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Coef</th>
<th>SE Coef</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constante</td>
<td>-0.047968</td>
<td>0.003182</td>
<td>-15.08</td>
<td>0.000</td>
</tr>
<tr>
<td>Concentración Molar</td>
<td>$352,881$</td>
<td>$1,354$</td>
<td>260.59</td>
<td>0.000</td>
</tr>
</tbody>
</table>
S = 0,00549375 R-cuad. = 100,0% R-cuad.(ajustado) = 100,0%
PRESS = 0,000425607 R-cuad.(pred) = 99,98%

Análisis de varianza

<table>
<thead>
<tr>
<th>Fuente</th>
<th>GL</th>
<th>SC</th>
<th>CM</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regresión</td>
<td>1</td>
<td>2,0495</td>
<td>2,0495</td>
<td>67905,36</td>
<td>0,000</td>
</tr>
<tr>
<td>Error residual</td>
<td>4</td>
<td>0,0001</td>
<td>0,0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>5</td>
<td>2,0496</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Análisis de regresión: Absorbancia en pH 7,4 vs. Concentración Molar

La ecuación de regresión es
Absorbancia en pH 7,4 = - 0,00549 + 302 Concentración Molar

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Coef</th>
<th>SE Coef</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constante</td>
<td>-0,005494</td>
<td>0,004253</td>
<td>-1,29</td>
<td>0,266</td>
</tr>
<tr>
<td>Concentración Molar</td>
<td>302,096</td>
<td>1,810</td>
<td>166,90</td>
<td>0,000</td>
</tr>
</tbody>
</table>

S = 0,00734304 R-cuad. = 100,0% R-cuad.(ajustado) = 100,0%
PRESS = 0,00131003 R-cuad.(pred) = 99,91%

Análisis de varianza

<table>
<thead>
<tr>
<th>Fuente</th>
<th>GL</th>
<th>SC</th>
<th>CM</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regresión</td>
<td>1</td>
<td>1,5020</td>
<td>1,5020</td>
<td>27856,37</td>
<td>0,000</td>
</tr>
<tr>
<td>Error residual</td>
<td>4</td>
<td>0,0002</td>
<td>0,0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>5</td>
<td>1,5022</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

La linealidad en cada uno de los sistemas evaluados fue superior al 99,9% de correlación, con base en los análisis de regresión realizados, lo que indica que el modelo se ajusta y predice adecuadamente y de forma lineal, con respecto a las variaciones de concentración del fármaco.

1.3. Precisión

En este parámetro, se evaluó la repetibilidad, tanto en el sistema como en el método.

1.3.1. Repetibilidad del método

Se prepararon seis muestras de ampicilina trihidratada a una concentración de 0.6mg/mL y se llevó a balón volumétrico de 10mL, se llevó a volumen con agua
destilada y se realizaron las seis lecturas en el espectrofotómetro UV a una longitud de onda de 256nm y a 37,0ºC.

Tabla 8. Evaluación de la repetibilidad del método a diferentes medios.

<table>
<thead>
<tr>
<th>Medio: Agua</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Promedio</th>
<th>Desv Est</th>
<th>%CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentración real</td>
<td>0,580</td>
<td>0,580</td>
<td>0,600</td>
<td>0,600</td>
<td>0,600</td>
<td>0,580</td>
<td>0,590</td>
<td>0,011</td>
<td>1,857</td>
</tr>
<tr>
<td>Absorbancia</td>
<td>0,570</td>
<td>0,550</td>
<td>0,580</td>
<td>0,570</td>
<td>0,570</td>
<td>0,560</td>
<td>0,570</td>
<td>0,010</td>
<td>1,690</td>
</tr>
<tr>
<td>Absorbancia Corregida</td>
<td>0,590</td>
<td>0,570</td>
<td>0,580</td>
<td>0,570</td>
<td>0,580</td>
<td>0,580</td>
<td>0,580</td>
<td>0,007</td>
<td>1,244</td>
</tr>
<tr>
<td>Medio: Buffer pH 7,4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>Promedio</td>
<td>Desv Est</td>
<td>%CV</td>
</tr>
<tr>
<td>Concentración real</td>
<td>0,600</td>
<td>0,560</td>
<td>0,600</td>
<td>0,600</td>
<td>0,600</td>
<td>0,620</td>
<td>0,597</td>
<td>0,02</td>
<td>3,296</td>
</tr>
<tr>
<td>Absorbancia</td>
<td>0,450</td>
<td>0,435</td>
<td>0,460</td>
<td>0,455</td>
<td>0,446</td>
<td>0,466</td>
<td>0,452</td>
<td>0,011</td>
<td>2,42</td>
</tr>
<tr>
<td>Absorbancia Corregida</td>
<td>0,450</td>
<td>0,466</td>
<td>0,460</td>
<td>0,455</td>
<td>0,446</td>
<td>0,451</td>
<td>0,455</td>
<td>0,007</td>
<td>1,614</td>
</tr>
<tr>
<td>Medio: Buffer pH 1,2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>Promedio</td>
<td>Desv Est</td>
<td>%CV</td>
</tr>
<tr>
<td>Concentración real</td>
<td>0,580</td>
<td>0,600</td>
<td>0,620</td>
<td>0,620</td>
<td>0,620</td>
<td>0,600</td>
<td>0,600</td>
<td>0,018</td>
<td>2,981</td>
</tr>
<tr>
<td>Absorbancia</td>
<td>0,480</td>
<td>0,503</td>
<td>0,522</td>
<td>0,530</td>
<td>0,470</td>
<td>0,502</td>
<td>0,501</td>
<td>0,023</td>
<td>4,627</td>
</tr>
<tr>
<td>Absorbancia Corregida</td>
<td>0,497</td>
<td>0,503</td>
<td>0,505</td>
<td>0,513</td>
<td>0,486</td>
<td>0,502</td>
<td>0,501</td>
<td>0,009</td>
<td>1,791</td>
</tr>
</tbody>
</table>

1.3.2. Repetibilidad del sistema

Para la repetibilidad del sistema se preparó una sola muestra de ampicilina trihidratada a una concentración de 0,6 mg/mL, se llevó a balón volumétrico de 10mL, se aforó con agua destilada y se realizaron 10 lecturas de la muestra en el espectrofotómetro UV a una longitud de onda de 256 nm y a 37,0ºC.

Tabla 9. Evaluación de la repetibilidad del sistema a diferentes medios.

<table>
<thead>
<tr>
<th>Número de repeticiones</th>
<th>Agua Absorbancia</th>
<th>Buffer pH 7,4 Absorbancia</th>
<th>Buffer pH 1,2 Absorbancia</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,552</td>
<td>0,437</td>
<td>0,520</td>
</tr>
<tr>
<td>2</td>
<td>0,552</td>
<td>0,437</td>
<td>0,520</td>
</tr>
<tr>
<td>3</td>
<td>0,552</td>
<td>0,437</td>
<td>0,520</td>
</tr>
<tr>
<td>4</td>
<td>0,552</td>
<td>0,437</td>
<td>0,520</td>
</tr>
<tr>
<td>5</td>
<td>0,552</td>
<td>0,437</td>
<td>0,520</td>
</tr>
<tr>
<td>6</td>
<td>0,552</td>
<td>0,437</td>
<td>0,520</td>
</tr>
<tr>
<td>7</td>
<td>0,552</td>
<td>0,437</td>
<td>0,520</td>
</tr>
<tr>
<td>8</td>
<td>0,552</td>
<td>0,437</td>
<td>0,520</td>
</tr>
<tr>
<td>9</td>
<td>0,552</td>
<td>0,437</td>
<td>0,520</td>
</tr>
<tr>
<td>10</td>
<td>0,552</td>
<td>0,437</td>
<td>0,520</td>
</tr>
</tbody>
</table>
Se observa que tanto para la repetibilidad del sistema como para la del método, tanto las desviaciones estándar como los coeficientes de variación son bajos, lo cual indica que el método y el sistema son repetibles y permiten otorgar resultados precisos.

Con todo esto, puede decirse que el método de espectrofotometría UV para la cuantificación de ampicilina es adecuado bajo las condiciones estudiadas.
ANEXO 2. Preparación de los sistemas buffer utilizados en el estudio

Los ensayos se llevaron a cabo en dos sistemas buffer, a un pH de 1,2 y 7,4, y con una fuerza iónica constante de 0,15 M. Se utilizó ácido clorhídrico y clorhidrato de potasio para el buffer ácido, mientras que para el buffer fisiológico se utilizaron fosfatos mono y dibásico de potasio y clorhidrato de potasio. Se siguieron las indicaciones de preparación de la farmacopea vigente (USP 35-NF 30, 2012), y se ajustó la fuerza iónica al valor requerido con clorhidrato de potasio.

1. Preparación del buffer de pH 1,2 y fuerza iónica 0,15 M.

El buffer de pH 1,2 según la farmacopea anteriormente mencionada, se prepara adicionando 425 mL de ácido clorhídrico 0,2 M y 200 mL de clorhidrato de potasio 0,2 M, y llevando a 1 L. Se realizan los cálculos respectivos para realizar el buffer directamente desde los reactivos puros.

\[[HCl \text{ 37\% (M)}] = \frac{1,19 \text{ g}}{\text{mL}} \cdot \frac{1000 \text{ mL}}{1 \text{ L}} \cdot \frac{1 \text{ mol}}{36,45 \text{ g}} = 32,65 \text{ M} \]

\[V_{HCl \text{ conc}} = \frac{1000 \text{ mL} \cdot 0,085 \text{ M}}{32,65 \text{ M}} = 2,6 \text{ mL} \]

\[g \text{ KCl} = \frac{200 \text{ mL} \cdot 0,2 \text{ M}}{1000 \text{ mL}} = 0,040 \text{ M} \cdot 1 \text{ L} \cdot \frac{58,55 \text{ g KCl}}{1 \text{ mol KCl}} = 2,3420 \text{ g KCl} \]

Por tanto, se requieren 2,6 mL de HCl concentrado y 2,3420 g de KCl para preparar 1 L de buffer de pH 1,2, según requerimientos farmacopeicos.

Partiendo de esto, se calcula primero la fuerza iónica de este sistema, para definir cuánto debe ser el exceso de KCl necesario para llegar a la fuerza iónica de 0,15 M.

\[[\text{HCl}] = \frac{425 \text{ mL} \cdot 0,2 \text{ M}}{1000 \text{ mL}} = 0,085 \text{ M} \]

\[[\text{KCl}] = \frac{200 \text{ mL} \cdot 0,2 \text{ M}}{1000 \text{ mL}} = 0,040 \text{ M} \]

Fuerza iónica:
Se necesita entonces un exceso de KCl que aporte 0,025 M de fuerza iónica al sistema. Se realiza el cálculo para expresar este valor en términos del compuesto en su forma sólida.

\[\mu = \frac{1}{2} \sum_{i=1}^{n} C_i Z_i^2 \]

\[\mu = \frac{1}{2} \left((0,085M) \times (1)^2 \right) + \left((0,085M) \times (-1)^2 \right) + \left((0,040M) \times (1)^2 \right) + \left((0,040M) \times (-1)^2 \right) \]

\[\mu = 0,125 \text{ M} \]

Por tanto, para preparar el buffer de pH 1,2 con la fuerza iónica requerida, se requiere un total de 3,8058 g de KCl por litro de solución.

2. Preparación del buffer de pH 7,4 y fuerza iónica de 0,15 M.

El buffer de pH 7,4 se prepara a partir de fosfato mono y dibásico de potasio, con base en el equilibrio de sistema buffer, es decir, la ecuación de Henderson Hasselbach:

\[\text{pH} = \text{pK}_a + \log_{10} \left(\frac{[A^-]}{[HA]} \right) \]

En este caso, como el sistema usado (fosfato) tiene tres disociaciones, se usará el valor de la segunda disociación (pK\(_a\) = 7,2):

\[7,4 = 7,2 + \log \left(\frac{[HPO_4^{2-}]}{[H_2PO_4^-]} \right) \]

\[\log \left(\frac{[HPO_4^{2-}]}{[H_2PO_4^-]} \right) = 0,2 \]

\[\frac{[HPO_4^{2-}]}{[H_2PO_4^-]} = 1,585 \]
\[[HPO_4^{-2}] = 1,585 \times [H_2PO_4^-] \]

Si se parte de un sistema buffer que contenga 0,010 M de fosfato dibásico de potasio, se tendría que:

\[[HPO_4^{-2}] = 1,585 \times 0,010 \, M \]

\[[HPO_4^{-2}] = 0,016 \, M \]

Por tanto, la concentración de fosfato monobásico de potasio en el sistema es de 0,016 M.

Se determinan los pesos necesarios de cada reactivo para llegar a 1 L de solución buffer con las concentraciones descritas anteriormente.

\[
g \, K_2HPO_4 \quad = \quad 0,010 \, M \times 1 \, L \times \frac{174,2 \, g}{1 \, mol} = 1,7420 \, g
\]

\[
KH_2PO_4 \quad = \quad 0,016 \, M \times 1 \, L \times \frac{136,09 \, g}{1 \, mol} = 2,1774 \, g
\]

Partiendo de esto, se calcula primero la fuerza iónica de este sistema, para definir cuánto debe ser el exceso de KCl necesario para llegar a la fuerza iónica de 0,15 M.

\[
\mu = \frac{1}{2} \sum_{i=1}^{n} C_i Z_i^2
\]

\[
\mu = \frac{1}{2} \times ((0,010 \, M \times 2 \times (1)^2) + ((0,010 \, M \times (1)^2) + ((0,010 \, M \times (-2)^2)
+ ((0,016 \, M \times (1)^2) + ((0,016 \, M \times 2 \times (1)^2) + ((0,016 \, M \times (-1)^2))
\]

\[
\mu = 0,076 \, M
\]

Se necesita entonces un exceso de KCl que aporte 0,074 M de fuerza iónica al sistema. Se realiza el cálculo para expresar este valor en términos del compuesto en su forma sólida.

\[
0,074 \, M \, KCl \times 1 \, L \times \frac{58,55 \, g \, KCl}{1 \, mol \, KCl} = 4,3327 \, g \, KCl
\]
Por tanto, para preparar el buffer de pH 7,4 con la fuerza iónica requerida, se requiere un total de 4,3327 g de KCl por litro de solución.
ANEXO 3: Análisis de varianzas para la comparación de los perfiles de disolución

Se realizaron los análisis de varianza para cada polímero estudiado en el programa estadístico según los parámetros de la tabla 2, y se obtuvieron los siguientes resultados:

Para el sistema polimérico PAM-18 Na2:

Modelo lineal general: AUC vs. Polímero. pH. Proporción

<table>
<thead>
<tr>
<th>Factor</th>
<th>Tipo</th>
<th>Niveles</th>
<th>Valores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polímero</td>
<td>fijo</td>
<td>2</td>
<td>-1. 1</td>
</tr>
<tr>
<td>pH</td>
<td>fijo</td>
<td>2</td>
<td>-1. 1</td>
</tr>
<tr>
<td>Proporción</td>
<td>fijo</td>
<td>3</td>
<td>-1. 0. 1</td>
</tr>
</tbody>
</table>

Análisis de varianza para AUC, utilizando SC ajustada para pruebas

<table>
<thead>
<tr>
<th>Fuente</th>
<th>GL</th>
<th>SC Sec.</th>
<th>SC Ajust.</th>
<th>CM Ajust.</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polímero</td>
<td>1</td>
<td>49575</td>
<td>49575</td>
<td>49575</td>
<td>18,72</td>
<td>0,049</td>
</tr>
<tr>
<td>pH</td>
<td>1</td>
<td>1720</td>
<td>1720</td>
<td>1720</td>
<td>0,65</td>
<td>0,505</td>
</tr>
<tr>
<td>Proporción</td>
<td>2</td>
<td>14734</td>
<td>14734</td>
<td>7367</td>
<td>2,78</td>
<td>0,264</td>
</tr>
<tr>
<td>Polímero*pH</td>
<td>1</td>
<td>26021</td>
<td>26021</td>
<td>26021</td>
<td>9,83</td>
<td>0,088</td>
</tr>
<tr>
<td>Polímero*Proporción</td>
<td>2</td>
<td>12005</td>
<td>12005</td>
<td>6002</td>
<td>2,27</td>
<td>0,306</td>
</tr>
<tr>
<td>pH*Proporción</td>
<td>2</td>
<td>25197</td>
<td>25197</td>
<td>12598</td>
<td>4,76</td>
<td>0,174</td>
</tr>
<tr>
<td>Error</td>
<td>2</td>
<td>5295</td>
<td>5295</td>
<td>2648</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>134547</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S = 51,4559 R-cuad. = 96,06% R-cuad.(ajustado) = 78,35%

Para el sistema polimérico PAM-18 K2:

Modelo lineal general: AUC vs. Polímero. pH. Proporción

<table>
<thead>
<tr>
<th>Factor</th>
<th>Tipo</th>
<th>Niveles</th>
<th>Valores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polímero</td>
<td>fijo</td>
<td>2</td>
<td>-1. 1</td>
</tr>
<tr>
<td>pH</td>
<td>fijo</td>
<td>2</td>
<td>-1. 1</td>
</tr>
<tr>
<td>Proporción</td>
<td>fijo</td>
<td>3</td>
<td>-1. 0. 1</td>
</tr>
</tbody>
</table>

Análisis de varianza para AUC, utilizando SC ajustada para pruebas

<table>
<thead>
<tr>
<th>Fuente</th>
<th>GL</th>
<th>SC Sec.</th>
<th>SC Ajust.</th>
<th>CM Ajust.</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polímero</td>
<td>1</td>
<td>47345</td>
<td>47345</td>
<td>47345</td>
<td>4,01</td>
<td>0,183</td>
</tr>
<tr>
<td>pH</td>
<td>1</td>
<td>969</td>
<td>969</td>
<td>969</td>
<td>0,08</td>
<td>0,802</td>
</tr>
<tr>
<td>Proporción</td>
<td>2</td>
<td>3822</td>
<td>3822</td>
<td>1911</td>
<td>0,16</td>
<td>0,861</td>
</tr>
<tr>
<td>Polímero*pH</td>
<td>1</td>
<td>17073</td>
<td>17073</td>
<td>17073</td>
<td>1,44</td>
<td>0,352</td>
</tr>
<tr>
<td>Polímero*Proporción</td>
<td>2</td>
<td>52690</td>
<td>52690</td>
<td>26345</td>
<td>2,23</td>
<td>0,310</td>
</tr>
<tr>
<td>pH*Proporción</td>
<td>2</td>
<td>84451</td>
<td>84451</td>
<td>42226</td>
<td>3,57</td>
<td>0,219</td>
</tr>
<tr>
<td>Error</td>
<td>2</td>
<td>23641</td>
<td>23641</td>
<td>11821</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Para el sistema polimérico Eudragit E-100 Cl:

Modelo lineal general: AUC vs. Polímero. pH. Proporción

<table>
<thead>
<tr>
<th>Factor</th>
<th>Tipo</th>
<th>Niveles</th>
<th>Valores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polímero</td>
<td>fijo</td>
<td>2</td>
<td>-1, 1</td>
</tr>
<tr>
<td>pH</td>
<td>fijo</td>
<td>2</td>
<td>-1, 1</td>
</tr>
<tr>
<td>Proporción</td>
<td>fijo</td>
<td>3</td>
<td>-1, 0, 1</td>
</tr>
</tbody>
</table>

Análisis de varianza para AUC, utilizando SC ajustada para pruebas

<table>
<thead>
<tr>
<th>Fuente</th>
<th>GL</th>
<th>SC Sec.</th>
<th>SC Ajust.</th>
<th>CM Ajust.</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polímero</td>
<td>1</td>
<td>3867883</td>
<td>3867883</td>
<td>3867883</td>
<td>5,28</td>
<td>0,148</td>
</tr>
<tr>
<td>pH</td>
<td>1</td>
<td>5313640</td>
<td>5313640</td>
<td>5313640</td>
<td>7,25</td>
<td>0,115</td>
</tr>
<tr>
<td>Proporción</td>
<td>2</td>
<td>1276707</td>
<td>1276707</td>
<td>638353</td>
<td>0,87</td>
<td>0,534</td>
</tr>
<tr>
<td>Polímero*pH</td>
<td>1</td>
<td>6085734</td>
<td>6085734</td>
<td>6085734</td>
<td>8,30</td>
<td>0,102</td>
</tr>
<tr>
<td>Polímero*Proporción</td>
<td>2</td>
<td>1693065</td>
<td>1693065</td>
<td>846532</td>
<td>1,16</td>
<td>0,464</td>
</tr>
<tr>
<td>pH*Proporción</td>
<td>2</td>
<td>1191653</td>
<td>1191653</td>
<td>595827</td>
<td>0,81</td>
<td>0,552</td>
</tr>
<tr>
<td>Error</td>
<td>2</td>
<td>1465623</td>
<td>1465623</td>
<td>732811</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>20894305</td>
<td>20894305</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S = 856,044 R-cuad. = 92,99% R-cuad.(ajustado) = 61,42%
ANEXO 4. Determinación del perfil de estabilidad del fármaco ampicilina bajo las condiciones estudiadas

1. Materiales y equipos

Para este estudio se utilizó ampicilina sódica y ampicilina trihidratada grado materia prima, provistas como donación por Tecnoquímicas S.A. Los reactivos para la preparación de los sistemas buffer poseen grado reactivo y se adquirieron de J.T. Baker (ácido clorhídrico al 37%) y de Merck (bases y sales de sodio y potasio).

Los equipos utilizados fueron un espectrofotómetro UV-Visible marca Shimadzu acoplado con un termocupla y un sistema multicelda con capacidad para seis celdas, un medidor de pH y conductividad marca SCHOTT® Instruments, modelo handylab pH/LF 12/multi 12, y un agitador tipo shaker marca Heidolph Unimax 1000 acoplado a un sistema termostatado para incubación Heidolph 1000.

2. Preparación de los sistemas buffer

Los ensayos se llevaron a cabo en dos sistemas buffer, a un pH de 1,2 y 7,4, y con una fuerza iónica constante de 0,15 M. Se utilizó ácido clorhídrico y clorhidrato de potasio para el buffer ácido, mientras que para el buffer fisiológico se utilizaron fosfatos mono y dibásico de potasio y clorhidrato de potasio. Se siguieron las indicaciones de preparación de la farmacopea vigente (USP 35-NF 30, 2012), y se ajustó la fuerza iónica al valor requerido con clorhidrato de potasio (KCl) (Ver Anexo 2).

3. Ejecución del estudio

Para determinar el barrido inicial de la ampicilina, tanto en la forma trihidratada como en la sódica, se preparó una solución de 0,6 mg/mL, tanto en agua destilada, como en los sistemas buffer tanto a pH 1,2 como a 7,4, con una fuerza iónica (μ) de 0,15 M, pesando 15 mg del compuesto y llevando a 25 mL con solvente aclimatado a 37°C, e inmediatamente se llevó al espectrofotómetro para realizar el barrido entre 200,00 y 800,00 nm. Se realizó además un barrido a este mismo intervalo de longitudes de onda para corroborar que el sistema solvente, en el caso de los buffers, no generara máximos de absorción que pudieran interferir con la señal del analito de interés.
Posteriormente, las muestras de fármaco tanto en forma sódica como en trihidratada se expusieron a condiciones de estrés con el fin de acelerar su degradación, y determinar si sus productos, descritas en la tabla 9.

Tabla 10. Condiciones de estrés utilizadas para cada fármaco, para evaluar su degradación.

<table>
<thead>
<tr>
<th>Fármaco</th>
<th>Ampicilina sódica</th>
<th>Ampicilina trihidratada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sistema</td>
<td>Agua</td>
<td>Buffer 1,2</td>
</tr>
<tr>
<td>Fuerza iónica</td>
<td>N/A</td>
<td>0,15 M</td>
</tr>
<tr>
<td>Calentamiento</td>
<td>40°C</td>
<td>40°C</td>
</tr>
<tr>
<td>Agitación</td>
<td>Magnética</td>
<td>Magnética</td>
</tr>
<tr>
<td>Tiempo de exposición al calor</td>
<td>4 horas</td>
<td>4 horas</td>
</tr>
</tbody>
</table>

Después de someter las muestras a las condiciones de estrés, se les realizó un barrido para determinar la presencia de nuevos máximos de absorción, haciendo barridos transcurridos 20, 40, 60, 120, 180 y 240 minutos.

4. **Resultados del perfil de estabilidad del fármaco ampicilina bajo las condiciones estudiadas**

Inicialmente se realizó un barrido espectral desde 200,00 hasta 800,00 nm del sistema buffer tanto a pH 1,2 como a pH 7,4 y con una fuerza iónica (µ) de 0,15 M, encontrándose que no se genera un máximo de absorción en las regiones de interés para ninguno de los dos sistemas.

Nota: Como se observa que entre 400,00 y 800,00 nm no hay absorción importante en ninguno de los espectros aquí mostrados, se adjunta al informe cada espectro desde 200 a 400 nm.
Figura 10. Espectros UV de los sistemas buffer pH 1,2 (izquierda) y pH 7,4 (derecha) con µ de 0,15 M en ausencia del fármaco.

Para determinar el barrido de la ampicilina, tanto en la forma trihidratada como en la sódica, se preparó una solución de 0,6 mg/mL en los sistemas estudiados, que inmediatamente se llevó al espectrofotómetro, obteniéndose los siguientes espectros:

<table>
<thead>
<tr>
<th>Longitud de onda máxima (nm)</th>
<th>Longitud de onda máxima (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 322,00</td>
<td>1. 316,00</td>
</tr>
<tr>
<td>2. 256,00</td>
<td>2. 268,00</td>
</tr>
<tr>
<td></td>
<td>3. 262,00</td>
</tr>
<tr>
<td></td>
<td>4. 256,50</td>
</tr>
</tbody>
</table>

Figura 11. Espectro UV de ampicilina sódica 0,6 mg/mL (izquierda) y ampicilina trihidratada 0,6 mg/mL (derecha) recién preparadas en agua destilada.
1. 268,00
2. 262,00
3. 256,00
4. 256,50

Figura 12. Espectro UV de ampicilina sódica 0,6 mg/mL (izquierda) y ampicilina trihidratada 0,6 mg/mL (derecha) recién preparadas en buffer pH 1,2 y µ 0,15 M.

1. 322,00
2. 256,00

Figura 13. Espectro UV de ampicilina sódica 0,6 mg/mL (izquierda) y ampicilina trihidratada 0,6 mg/mL (derecha) recién preparadas en buffer pH 7,4 y µ 0,15 M.
Posteriormente, las muestras de fármaco tanto en forma sódica como en trihidratada se expusieron a condiciones de estrés con el fin de acelerar su degradación, y determinar si sus productos, descritas en la tabla 9.

Después de someter las muestras a las condiciones de estrés, se les realizó un barrido para determinar la presencia de nuevos máximos de absorción, y a continuación se muestran los espectros obtenidos:

Figura 14. Espectro UV de ampicilina sódica 0,6 mg/mL (izquierda) y ampicilina trihidratada 0,6 mg/mL (derecha) en agua destilada bajo condiciones de estrés.
| Figura 15. Espectro UV de ampicilina sódica 0,6 mg/mL (izquierda) y ampicilina trihidratada 0,6 mg/mL (derecha) en buffer pH 1,2 y µ 0,15 M bajo condiciones de estrés. |
|---|---|
| Figura 16. Espectro UV de ampicilina sódica 0,6 mg/mL (izquierda) y ampicilina trihidratada 0,6 mg/mL (derecha) en buffer pH 7,4 y µ 0,15 M bajo condiciones de estrés. |

<table>
<thead>
<tr>
<th>Longitud de onda máxima (nm)</th>
<th>Longitud de onda máxima (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 322,00</td>
<td>1. 366,00</td>
</tr>
<tr>
<td>2. 268,00</td>
<td>2. 322,00</td>
</tr>
<tr>
<td>3. 262,00</td>
<td>3. 268,00</td>
</tr>
<tr>
<td>4. 256,50</td>
<td>4. 262,50</td>
</tr>
<tr>
<td>5. 250,00</td>
<td>5. 256,00</td>
</tr>
<tr>
<td>6. 250,50</td>
<td></td>
</tr>
</tbody>
</table>
Como puede observarse, al transcurrir el tiempo en las condiciones de estrés, para pH 1,2 se observa que hay nuevos máximos de absorción a 324,00 nm y a 366,00 nm, y se presentó un hombro a 250,00 nm para la ampicilina trihidratada, y un nuevo máximo a 335,00 nm y se presentó un hombro a 250,00 nm para la ampicilina sódica, fenómenos que muy posiblemente se deben a productos de degradación, mientras que el resto del espectro permaneció constante en comparación con el espectro para la muestra recién preparada. En el caso del sistema a pH 7,4 se observa un aumento en la absorción, en 236,00 nm en ampicilina sódica, y en la trihidratada se observa este aumento a 315,00 nm. Por tanto, y para determinar la longitud de onda óptima, se realizó un acercamiento a la región del espectro que permaneció constante en función del tiempo, que fue aproximadamente entre 240,00 nm y 280,00 nm.

<table>
<thead>
<tr>
<th>Longitud de onda máxima (nm)</th>
<th>Verde brillante: 0 min</th>
<th>Azul: 0 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rojo: 20 min</td>
<td>Verde pálido: 20 min</td>
<td></td>
</tr>
<tr>
<td>Azul: 40 min</td>
<td>Verde: 40 min</td>
<td></td>
</tr>
<tr>
<td>Amarillo: 60 min</td>
<td>Verde: 60 min</td>
<td></td>
</tr>
<tr>
<td>Fucsia: 120 min</td>
<td>Azul: 120 min</td>
<td></td>
</tr>
<tr>
<td>Verde pasto: 180 min</td>
<td>Negro: 180 min</td>
<td></td>
</tr>
<tr>
<td>Naranja: 240 min</td>
<td>Verde pálido: 240 min</td>
<td></td>
</tr>
</tbody>
</table>

Figura 17. Espectros UV de ampicilina sódica 0,6 mg/mL (izquierda) y ampicilina trihidratada 0,6 mg/mL (derecha) en agua destilada en función del tiempo bajo condiciones de estrés.
Figura 18. Espectros UV de ampicilina sódica 0,6 mg/mL (izquierda) y ampicilina trihidratada 0,6 mg/mL (derecha) en buffer pH 1,2 y μ 0,15 M en función del tiempo bajo condiciones de estrés.
Figura 19. Espectros UV de ampicilina sódica 0,6 mg/mL (izquierda) y ampicilina trihidratada 0,6 mg/mL (derecha) en buffer pH 7,4 y μ 0,15 M en función del tiempo bajo condiciones de estrés.

Con base en los resultados obtenidos, puede decirse que la parte más constante del espectro se encuentra a 256,00 nm, según la tendencia de los espectros obtenidos, y no hay interferencia de posibles productos de degradación formados.

Se realizó además un barrido del buffer expuesto a las mismas condiciones de estrés, y se vio que no hay ningún cambio con respecto al buffer inicial. Es de notar que los espectros generados en el pH 1,2 tienden a aumentarse en función del tiempo. Este comportamiento se denomina desplazamiento de línea base, y se puede generar debido a la inestabilidad del sistema, o a problemas de tipo instrumental.

La ampicilina es uno de los antibióticos penicilínicos considerados ácido-resistentes en comparación con la penicilina tradicional (bencil penicilina), debido a su cadena lateral, pues genera un impedimento estérico que protege al anillo β-lactamico. Sin embargo, no es completamente inmune al efecto catalítico en un medio ácido. Por tanto, es importante garantizar la integridad del principio activo a las condiciones de estudio.
Después de realizar el estudio de estabilidad tanto para la ampicilina sódica como para la ampicilina trihidratada a las diferentes condiciones estudiadas (agua, buffer pH 1,2 y buffer pH 7,4), se observaron varios comportamientos importantes.

El primero es la diferencia entre la respuesta obtenida para los dos tipos de ampicilina. Se ha observado que no hay diferencia entre el perfil de degradación, debido a que el grado de hidratación afecta principalmente la solubilidad del principio activo, pero no se ve involucrado en la estabilidad de éste pues no altera la molécula como tal.

Lo segundo es que hay una diferencia importante entre los medios estudiados. Tanto en agua como en el buffer de pH 7,4, durante el tiempo de duración del estudio, no se observó una variación del espectro con respecto al tomado al inicio. En contraste, el sistema buffer a pH 1,2 se encontró un máximo de absorbancia entre 320 y 322 nm a partir de los 40 minutos de transcurrido el estudio, que aumentaba en función del tiempo, muy posiblemente generado por un producto de degradación. Esto es de esperar, debido a que los antibióticos de tipo penicilínico son susceptibles de hidrólisis catalizada tanto por ácido como por base, generando una apertura del anillo beta-lactamico. Estudios anteriores muestran que, debido a sus dos valores de pKa (2,66 y 7,24), la ampicilina muestra un carácter zwitteriónico en valores de pH débilmente ácidos, cercanos a 5,8. A este valor de pH se ha encontrado la máxima estabilidad del principio activo.

Los productos de degradación de la ampicilina varían según las condiciones del medio. Después de realizar una investigación bibliográfica, se observa que, a las condiciones estudiadas, el producto de degradación que genera este máximo de absorbancia es el ácido alfa-aminobencilpenicilínico, según reportes de la literatura que indican que este compuesto se forma bajo condicionesácidas (Hou, 1969), y produce un máximo de absorción ultravioleta en la longitud de onda mencionada anteriormente.
ANEXO 5. Certificado de análisis de materias primas y comprimidos comerciales de ampicilina.

Fersinsa Gb

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assay (HPLC)</td>
<td>Min. 84.0 %</td>
<td>85.2 %</td>
</tr>
<tr>
<td>As such</td>
<td>Min. 97.0 %</td>
<td>98.7 %</td>
</tr>
<tr>
<td>Appearance</td>
<td>White, crystalline powder</td>
<td>conforms</td>
</tr>
<tr>
<td>Identification</td>
<td>Conforms with test</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>3.5 - 5.5</td>
<td>4.7</td>
</tr>
<tr>
<td>Appearance of solution in HCl</td>
<td>Not more opalescent than ref. susp. 2</td>
<td>conforms</td>
</tr>
<tr>
<td>in NH4OH</td>
<td>Not more opalescent than ref. susp. 2</td>
<td>conforms</td>
</tr>
<tr>
<td>Water</td>
<td>< 12.0 - 15.0 %</td>
<td>13.7 %</td>
</tr>
<tr>
<td>Crystallinity</td>
<td>Crystalline</td>
<td></td>
</tr>
<tr>
<td>Pyridine</td>
<td>NMT 200 ppm</td>
<td>41 ppm</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>NMT 2000 ppm</td>
<td>495 ppm</td>
</tr>
<tr>
<td>2-propanol</td>
<td>NMT 2000 ppm</td>
<td>581 ppm</td>
</tr>
<tr>
<td>Related impurities</td>
<td>ampicilloic acid</td>
<td>NMT 1.0 %</td>
</tr>
<tr>
<td></td>
<td>ampicillenic acid 7MR</td>
<td>NMT 0.3 %</td>
</tr>
<tr>
<td></td>
<td>ampicillin dimer</td>
<td>NMT 1.0 %</td>
</tr>
<tr>
<td></td>
<td>ampicillin trimer</td>
<td>NMT 0.4 %</td>
</tr>
<tr>
<td></td>
<td>ampicillin dimer (open)</td>
<td>NMT 0.6 %</td>
</tr>
<tr>
<td></td>
<td>2-(G)-piperazine-2,5-dione</td>
<td>NMT 0.4 %</td>
</tr>
<tr>
<td></td>
<td>2-(R)-piperazine-2,5-dione</td>
<td>NMT 0.3 %</td>
</tr>
<tr>
<td></td>
<td>N-phenyl glycil ampicillin</td>
<td>NMT 0.8 %</td>
</tr>
<tr>
<td></td>
<td>6-amino-pericillanic acid</td>
<td>NMT 0.5 %</td>
</tr>
<tr>
<td></td>
<td>alpha phenylglycine</td>
<td>NMT 0.5 %</td>
</tr>
<tr>
<td></td>
<td>Any individual unspecified impurity</td>
<td>NMT 0.25 %</td>
</tr>
<tr>
<td></td>
<td>Total impurities</td>
<td>NMT 3.0 %</td>
</tr>
</tbody>
</table>

*Checked at regular intervals
N.N.-Dimethyglyline is not used in the manufacturing process of this substance or present on any of the raw materials.

Date of issue: 21/08/12

Quality Assurance Department

O.F.B. Jose F. Arefeza M.
REGISTRO RESULTADO DE MATERIAS PRIMAS

CÓDIGO: FC-049
FON: 02
Frente hasta: Noviembre 2013

Laboratorio:
Tecnoquímicas

Producto:
Ampicilina Trihidrato Polvo

Lote:
F253120

Fecha de Fabricación:
Diciembre 2011

Fecha de vencimiento:
Noviembre 2016

Fecha de reanálisis:
Septiembre 2013

Fabricante:
Fersinsa Gb

Cantidad:
75 Kg

Especificación:
47000357 (T.Q)

<table>
<thead>
<tr>
<th>Ensayo</th>
<th>Descripción</th>
<th>Especificación</th>
<th>Método</th>
<th>Resultado</th>
<th>Fecha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identificación</td>
<td>Polvo fino blanco cristalino con olor característico</td>
<td>Organoléptico</td>
<td>Cumple</td>
<td>07-Sep-12</td>
<td></td>
</tr>
<tr>
<td>Solubilidad</td>
<td>Ligeramente soluble en agua. Ligeramente soluble en metanol, Prácticamente insoluble en cloroformo</td>
<td>USP v</td>
<td>Cumple</td>
<td>11-Sep-12</td>
<td></td>
</tr>
<tr>
<td>Cristalinidad</td>
<td>Cumple con los requisitos</td>
<td>USP v</td>
<td>Cumple</td>
<td>12-Sep-12</td>
<td></td>
</tr>
<tr>
<td>Densidad aparente</td>
<td>Mínimo 0,28g/mL</td>
<td>Métodos Generales USP Vigente</td>
<td>0,34g/mL</td>
<td>26-Sep-12</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>3,5 - 6,0</td>
<td>USP v</td>
<td>4,57</td>
<td>26-Sep-12</td>
<td></td>
</tr>
<tr>
<td>Agua KF</td>
<td>12,0% - 15,0%</td>
<td>USP v</td>
<td>14,4%</td>
<td>14-Sep-12</td>
<td></td>
</tr>
<tr>
<td>Impurezas Relacionadas</td>
<td>D-Fenilglicina: Máximo 0,5%</td>
<td>USP v</td>
<td>0,0%</td>
<td>11-Sep-12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acido 6-amino-3-penicilánico: Máximo 0,5%</td>
<td>USP v</td>
<td>0,0%</td>
<td>11-Sep-12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acido Ampicolico: Máximo 1,0%</td>
<td>USP v</td>
<td>0,2%</td>
<td>11-Sep-12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Analogo Triazepina de ampicilina: Máximo 0,3%</td>
<td>USP v</td>
<td>0,1%</td>
<td>11-Sep-12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isomero 1: Máximo 0,4%</td>
<td>USP v</td>
<td>0,0%</td>
<td>11-Sep-12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isomero 2: Máximo 0,3%</td>
<td>USP v</td>
<td>0,0%</td>
<td>11-Sep-12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oligomero 2 de Ampicilina: Máximo 0,6%</td>
<td>USP v</td>
<td>0,0%</td>
<td>11-Sep-12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D-Fenilgliciddiampcilina: Máximo 0,8%</td>
<td>USP v</td>
<td>0,2%</td>
<td>11-Sep-12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oligomero 1 de Ampicilina (cimero): 1,0%</td>
<td>USP v</td>
<td>0,2%</td>
<td>11-Sep-12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oligomero 1 de ampicilina (trimero): Máximo 0,4%</td>
<td>USP v</td>
<td>0,3%</td>
<td>11-Sep-12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cualquier impureza individual no especificada: Máximo 0,26%</td>
<td>USP v</td>
<td>< 0,25%</td>
<td>11-Sep-12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Impurezas totales: Máximo 3,0%</td>
<td>USP v</td>
<td>1,06%</td>
<td>11-Sep-12</td>
<td></td>
</tr>
</tbody>
</table>

| **Disolventes Residuales** | Cumple con los requisitos | USP v | Cumple | 11-Sep-12 |

Valoración (Ampicilina)*	No menos de 900 µg y no más de 1050 µg de Ampicilina por mg, calculado en B.A.	USP v	853,4 µg / mg B.H.	12-Sep-12
Valoración (Ampicilina)*	897,1 µg / mg B.A.			
Valoración (Ampicilina)*	No menos de 900 µg y no más de 1050 µg de Ampicilina por mg, calculado en B.A.	USP v	852,0 µg / mg B.H.	15-Dic-11
Valoración (Ampicilina)*	987,0 µg / mg B.A.			

Observaciones:
Se anexa informe de Granulometría
Se aprieta con dato de valoración del fabricante

Responsable:
G.F. Suárez Urrea
Analista de Calidad
Fecha: 27 de Septiembre 2012

Aprobado por:
Q.F. Constanteugo
Jefe de Calidad
Fecha: 28 de Noviembre 2012
CONTROL DE CALIDAD

REPORTE ANALITICO DE MATERIA PRIMA

NOMBRE: EUDRAGIT E-100
CÓDIGO: 472003313
REEMPLAZO A: 27 AGO 2007
CC: 100532032
CANTIDAD: 10,019
NEG.CC:
FABRICANTE: Evonik
PROVEEDOR: Almopan, Colombia
VALIDO HASTA: 30 NOV 2012
NÚMERO DE ENVIOS: 2
RECIPIENTES MUESTREADOS: 2
FECHA: 02. MAR. 2012

ENSAYO FUENTE

<table>
<thead>
<tr>
<th>ENSAYO</th>
<th>ESPECIFICACIONES</th>
<th>METODO ANALISIS</th>
<th>RESULTADO</th>
<th>ESTANDAR</th>
<th>FECHA</th>
<th>ANOTACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DESCRIPCIÓN

- CÉRTAS DE FORMA CILINDRICA, ROCOSOS O LIGERAMENTE AMARILLOS, TRANSPARENTES, BRILLANTES CON COLOR A ARNIA

IDENTIFICACIÓN

- **A.** IR: SIMILAR A ESTANDAR
- **B.** CUMPLE EL ENSAYO

SOLUBILIDAD

- **PRACTICAMENTE INSOLUBLE EN AGUA**
- **LIBREMENTE SOLUBLE EN CLORO DE METILENO**
- **DISOLVE LENTAMENTE EN ALCOHOL**

VISCOSIDAD (Solución S)

- **ENTRE 3 mPa.s – 6 mPa.s**

ABSORBANCIA A 420mm (Solución S)

- **MÁXIMO 0,02**

APARIENCIA DE LA PELOTE (Solución S)

- **SE FORMA UNE PELOTE CLARA CUANDO SECA**

PERDIDA POR SECADO 110°C, 3h

- **MÁXIMO 2,0%**

MONÓMEROS HPLC

- **SUMA DE BUTILO METAACRILATO + METIL METAACRILATO Y 2-DIMETILAMINOETIL METAACRILATO MÁXIMO 0,3%**

ETILES PESADOS C

- **MÁXIMO 20 ppm**

CENIZAS SULFATADAS

- **MÁXIMO 0,1%**

DISOLVENTES RESIDUALES

- **CUMPLE CON LOS REQUISITOS**

ENSAYO GRUPOS DIMETILAMINOETIL EN BASE SECA

- **20,8% - 25,5%**

OBSERVACIONES:

APROBADO

REVISADO POR: _D. de Jesus_
FECHA: 21 MAR 2012

Reacondicionar los recipientes de acuerdo con lo solicitado.

TÉCNICA VIGENTE: MP-1438, EMISSION 30 NOV 2010

APRINTO: 29 de MAR. 2012

ALMACENAR EN RECIPIENTES BIEN CERRADOS.

Firma: Evonik Industries / Almopan Colombia

Control de Calidad

F-SPRC-029-3R4

Formato Aprobado por: CC. Villamil

74
<table>
<thead>
<tr>
<th>Ensayo</th>
<th>Especificaciones</th>
<th>Método Analisis</th>
<th>Resultado</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPCIÓN</td>
<td>Tabletas cápsulas, biconvexas, color blanco, crema, con ranura central</td>
<td>VISUAL</td>
<td>Tabletas cápsulas, biconvexas, color blanco, crema, con ranura central</td>
</tr>
<tr>
<td>PESO PROMEDIO</td>
<td>MAXIMO 10%</td>
<td>METODOS GENERALES</td>
<td>0,5 %</td>
</tr>
<tr>
<td>AGUA KI</td>
<td>1267 mg TAB - 1428 mg TAB</td>
<td>USP VIGENTE</td>
<td>3,68 mg TAB</td>
</tr>
<tr>
<td>DISOLUCION</td>
<td>Ap. 1 100 ppm, Agua 900 ml (USP VIGENTE)</td>
<td>MINIMO 75% (Q) EN 45 MINUTOS</td>
<td>99,0 %</td>
</tr>
<tr>
<td>IDENTIFICACION Ampicilina Trihidrato</td>
<td>CUMPLE EL MENOR A 15</td>
<td>USP VIGENTE</td>
<td>S9</td>
</tr>
<tr>
<td>ENSAYO Ampicilina Base</td>
<td>9000 mg TAB - 1200 mg TAB</td>
<td>TAH-027</td>
<td>90,6 mg TAB</td>
</tr>
<tr>
<td></td>
<td>90,0 % - 120,0 %</td>
<td>TAH-027</td>
<td>98,1 %</td>
</tr>
</tbody>
</table>

Este certificado de análisis garantiza el cumplimiento del proceso de manufactura y las especificaciones de producto. Este documento es controlado electrónicamente y se valida un firma.

Observaciones:

Aprobado por: Indira O'Byrne Fecha aprobación: 4-5-2013 10:47:54
Librado por: Indira O'Byrne Fecha liberación: 4-5-2013 10:46:36
ANEXO 6. Datos primarios de los estudios realizados.

Tabla 11. Datos primarios del perfil de disolución del fármaco en el medio a pH 1,2 y fuerza iónica 0,15 M.

<table>
<thead>
<tr>
<th>Tiempo (min)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.764</td>
<td>0.702</td>
<td>0.755</td>
<td>0.745</td>
<td>0.693</td>
<td>0.733</td>
<td>0.732</td>
</tr>
<tr>
<td>10</td>
<td>0.856</td>
<td>0.796</td>
<td>0.827</td>
<td>0.837</td>
<td>0.775</td>
<td>0.823</td>
<td>0.819</td>
</tr>
<tr>
<td>15</td>
<td>0.874</td>
<td>0.812</td>
<td>0.835</td>
<td>0.862</td>
<td>0.790</td>
<td>0.844</td>
<td>0.836</td>
</tr>
<tr>
<td>20</td>
<td>0.867</td>
<td>0.824</td>
<td>0.844</td>
<td>0.871</td>
<td>0.807</td>
<td>0.850</td>
<td>0.844</td>
</tr>
<tr>
<td>25</td>
<td>0.870</td>
<td>0.830</td>
<td>0.845</td>
<td>0.887</td>
<td>0.807</td>
<td>0.853</td>
<td>0.849</td>
</tr>
<tr>
<td>30</td>
<td>0.869</td>
<td>0.818</td>
<td>0.837</td>
<td>0.863</td>
<td>0.797</td>
<td>0.843</td>
<td>0.838</td>
</tr>
<tr>
<td>35</td>
<td>0.865</td>
<td>0.819</td>
<td>0.841</td>
<td>0.863</td>
<td>0.792</td>
<td>0.843</td>
<td>0.837</td>
</tr>
<tr>
<td>40</td>
<td>0.868</td>
<td>0.814</td>
<td>0.834</td>
<td>0.867</td>
<td>0.796</td>
<td>0.848</td>
<td>0.838</td>
</tr>
<tr>
<td>45</td>
<td>0.867</td>
<td>0.820</td>
<td>0.840</td>
<td>0.862</td>
<td>0.796</td>
<td>0.840</td>
<td>0.837</td>
</tr>
</tbody>
</table>

Tabla 12. Datos primarios del perfil de disolución del fármaco en el medio a pH 7,4 y fuerza iónica 0,15 M.

<table>
<thead>
<tr>
<th>Tiempo (min)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.764</td>
<td>0.702</td>
<td>0.755</td>
<td>0.745</td>
<td>0.693</td>
<td>0.733</td>
<td>0.732</td>
</tr>
<tr>
<td>10</td>
<td>0.856</td>
<td>0.796</td>
<td>0.827</td>
<td>0.837</td>
<td>0.775</td>
<td>0.823</td>
<td>0.819</td>
</tr>
<tr>
<td>15</td>
<td>0.874</td>
<td>0.812</td>
<td>0.835</td>
<td>0.862</td>
<td>0.790</td>
<td>0.844</td>
<td>0.836</td>
</tr>
<tr>
<td>20</td>
<td>0.867</td>
<td>0.824</td>
<td>0.844</td>
<td>0.871</td>
<td>0.807</td>
<td>0.850</td>
<td>0.844</td>
</tr>
<tr>
<td>25</td>
<td>0.870</td>
<td>0.830</td>
<td>0.845</td>
<td>0.887</td>
<td>0.807</td>
<td>0.853</td>
<td>0.849</td>
</tr>
<tr>
<td>30</td>
<td>0.869</td>
<td>0.818</td>
<td>0.837</td>
<td>0.863</td>
<td>0.797</td>
<td>0.843</td>
<td>0.838</td>
</tr>
<tr>
<td>35</td>
<td>0.865</td>
<td>0.819</td>
<td>0.841</td>
<td>0.863</td>
<td>0.792</td>
<td>0.843</td>
<td>0.837</td>
</tr>
<tr>
<td>40</td>
<td>0.868</td>
<td>0.814</td>
<td>0.834</td>
<td>0.867</td>
<td>0.796</td>
<td>0.848</td>
<td>0.838</td>
</tr>
<tr>
<td>45</td>
<td>0.867</td>
<td>0.820</td>
<td>0.840</td>
<td>0.862</td>
<td>0.796</td>
<td>0.840</td>
<td>0.837</td>
</tr>
</tbody>
</table>
Tabla 13. Datos primarios del perfil de disolución del fármaco con PAM-18 Na2 a 50% en el medio a pH 1,2 y fuerza iónica 0,15 M.

<table>
<thead>
<tr>
<th>Tiempo (min)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.975</td>
<td>1.103</td>
<td>1.034</td>
<td>1.057</td>
<td>1.099</td>
<td>1.132</td>
<td>1.067</td>
</tr>
<tr>
<td>10</td>
<td>1.081</td>
<td>1.175</td>
<td>1.086</td>
<td>1.180</td>
<td>1.137</td>
<td>1.199</td>
<td>1.143</td>
</tr>
<tr>
<td>15</td>
<td>1.094</td>
<td>1.186</td>
<td>1.093</td>
<td>1.203</td>
<td>1.154</td>
<td>1.200</td>
<td>1.155</td>
</tr>
<tr>
<td>20</td>
<td>1.117</td>
<td>1.203</td>
<td>1.126</td>
<td>1.214</td>
<td>1.130</td>
<td>1.184</td>
<td>1.155</td>
</tr>
<tr>
<td>30</td>
<td>1.111</td>
<td>1.207</td>
<td>1.112</td>
<td>1.224</td>
<td>1.179</td>
<td>1.231</td>
<td>1.177</td>
</tr>
<tr>
<td>35</td>
<td>1.120</td>
<td>1.211</td>
<td>1.113</td>
<td>1.224</td>
<td>1.187</td>
<td>1.223</td>
<td>1.180</td>
</tr>
<tr>
<td>40</td>
<td>1.122</td>
<td>1.214</td>
<td>1.119</td>
<td>1.231</td>
<td>1.188</td>
<td>1.217</td>
<td>1.182</td>
</tr>
<tr>
<td>45</td>
<td>1.217</td>
<td>1.130</td>
<td>1.215</td>
<td>1.122</td>
<td>1.238</td>
<td>1.192</td>
<td>1.186</td>
</tr>
</tbody>
</table>

Tabla 14. Datos primarios del perfil de disolución del fármaco con PAM-18 Na2 a 100% en el medio a pH 1,2 y fuerza iónica 0,15 M.

<table>
<thead>
<tr>
<th>Tiempo (min)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1.130</td>
<td>1.105</td>
<td>1.061</td>
<td>1.099</td>
</tr>
<tr>
<td>10</td>
<td>1.168</td>
<td>1.131</td>
<td>1.107</td>
<td>1.135</td>
</tr>
<tr>
<td>15</td>
<td>1.181</td>
<td>1.145</td>
<td>1.117</td>
<td>1.148</td>
</tr>
<tr>
<td>20</td>
<td>1.195</td>
<td>1.165</td>
<td>1.126</td>
<td>1.162</td>
</tr>
<tr>
<td>25</td>
<td>1.201</td>
<td>1.162</td>
<td>1.137</td>
<td>1.167</td>
</tr>
<tr>
<td>30</td>
<td>1.218</td>
<td>1.171</td>
<td>1.170</td>
<td>1.186</td>
</tr>
<tr>
<td>35</td>
<td>1.226</td>
<td>1.187</td>
<td>1.157</td>
<td>1.190</td>
</tr>
<tr>
<td>40</td>
<td>1.230</td>
<td>1.208</td>
<td>1.177</td>
<td>1.205</td>
</tr>
<tr>
<td>45</td>
<td>1.257</td>
<td>1.202</td>
<td>1.187</td>
<td>1.215</td>
</tr>
</tbody>
</table>
Tabla 15. Datos primarios del perfil de disolución del fármaco con PAM-18 Na2 a 150% en el medio a pH 1,2 y fuerza iónica 0,15 M.

<table>
<thead>
<tr>
<th>Tiempo (min)</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1.077</td>
<td>1.006</td>
<td>1.074</td>
<td>1.052</td>
</tr>
<tr>
<td>10</td>
<td>1.121</td>
<td>1.082</td>
<td>1.099</td>
<td>1.101</td>
</tr>
<tr>
<td>15</td>
<td>1.135</td>
<td>1.098</td>
<td>1.114</td>
<td>1.116</td>
</tr>
<tr>
<td>20</td>
<td>1.143</td>
<td>1.116</td>
<td>1.122</td>
<td>1.127</td>
</tr>
<tr>
<td>25</td>
<td>1.168</td>
<td>1.115</td>
<td>1.141</td>
<td>1.141</td>
</tr>
<tr>
<td>30</td>
<td>1.169</td>
<td>1.135</td>
<td>1.145</td>
<td>1.150</td>
</tr>
<tr>
<td>35</td>
<td>1.177</td>
<td>1.150</td>
<td>1.152</td>
<td>1.160</td>
</tr>
<tr>
<td>40</td>
<td>1.184</td>
<td>1.161</td>
<td>1.163</td>
<td>1.169</td>
</tr>
<tr>
<td>45</td>
<td>1.188</td>
<td>1.155</td>
<td>1.188</td>
<td>1.177</td>
</tr>
</tbody>
</table>

Tabla 16. Datos primarios del perfil de disolución del fármaco con PAM-18 Na2 a 50% en el medio a pH 7,4 y fuerza iónica 0,15 M.

<table>
<thead>
<tr>
<th>Tiempo (min)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.914</td>
<td>0.904</td>
<td>0.905</td>
<td>0.984</td>
<td>0.902</td>
<td>0.986</td>
<td>0.933</td>
</tr>
<tr>
<td>10</td>
<td>0.992</td>
<td>0.986</td>
<td>0.994</td>
<td>1.065</td>
<td>1.006</td>
<td>1.046</td>
<td>1.015</td>
</tr>
<tr>
<td>15</td>
<td>1.012</td>
<td>1.005</td>
<td>1.007</td>
<td>1.081</td>
<td>1.035</td>
<td>1.061</td>
<td>1.034</td>
</tr>
<tr>
<td>20</td>
<td>1.018</td>
<td>1.009</td>
<td>1.015</td>
<td>1.083</td>
<td>1.031</td>
<td>1.064</td>
<td>1.037</td>
</tr>
<tr>
<td>25</td>
<td>1.009</td>
<td>1.007</td>
<td>1.020</td>
<td>1.089</td>
<td>1.039</td>
<td>1.064</td>
<td>1.038</td>
</tr>
<tr>
<td>30</td>
<td>1.022</td>
<td>1.022</td>
<td>1.016</td>
<td>1.085</td>
<td>1.040</td>
<td>1.076</td>
<td>1.044</td>
</tr>
<tr>
<td>35</td>
<td>1.013</td>
<td>1.003</td>
<td>1.013</td>
<td>1.074</td>
<td>1.035</td>
<td>1.066</td>
<td>1.034</td>
</tr>
<tr>
<td>40</td>
<td>1.019</td>
<td>1.009</td>
<td>1.018</td>
<td>1.094</td>
<td>1.033</td>
<td>1.069</td>
<td>1.040</td>
</tr>
<tr>
<td>45</td>
<td>1.012</td>
<td>1.011</td>
<td>1.015</td>
<td>1.067</td>
<td>1.037</td>
<td>1.062</td>
<td>1.028</td>
</tr>
</tbody>
</table>
Tabla 17. Datos primarios del perfil de disolución del fármaco con PAM-18 Na2 a 100% en el medio a pH 7,4 y fuerza iónica 0,15 M.

<table>
<thead>
<tr>
<th>Tiempo (min)</th>
<th>Absorbancia vasos</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>Promedio</td>
</tr>
<tr>
<td>5</td>
<td>0.932</td>
<td>0.907</td>
<td>0.899</td>
<td>0.913</td>
</tr>
<tr>
<td>10</td>
<td>1.054</td>
<td>0.991</td>
<td>1.004</td>
<td>0.990</td>
</tr>
<tr>
<td>15</td>
<td>1.075</td>
<td>0.992</td>
<td>1.010</td>
<td>1.017</td>
</tr>
<tr>
<td>20</td>
<td>1.066</td>
<td>0.991</td>
<td>1.013</td>
<td>1.022</td>
</tr>
<tr>
<td>25</td>
<td>1.088</td>
<td>0.984</td>
<td>1.022</td>
<td>1.029</td>
</tr>
<tr>
<td>30</td>
<td>1.075</td>
<td>0.980</td>
<td>1.020</td>
<td>1.026</td>
</tr>
<tr>
<td>35</td>
<td>1.068</td>
<td>1.001</td>
<td>1.007</td>
<td>1.025</td>
</tr>
<tr>
<td>40</td>
<td>1.082</td>
<td>0.995</td>
<td>1.036</td>
<td>1.035</td>
</tr>
<tr>
<td>45</td>
<td>1.075</td>
<td>0.996</td>
<td>1.024</td>
<td>1.032</td>
</tr>
</tbody>
</table>

Tabla 18. Datos primarios del perfil de disolución del fármaco con PAM-18 Na2 a 150% en el medio a pH 7,4 y fuerza iónica 0,15 M.

<table>
<thead>
<tr>
<th>Tiempo (min)</th>
<th>Absorbancia vasos</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>Promedio</td>
</tr>
<tr>
<td>5</td>
<td>0.926</td>
<td>0.969</td>
<td>0.975</td>
<td>0.957</td>
</tr>
<tr>
<td>10</td>
<td>1.050</td>
<td>1.034</td>
<td>1.036</td>
<td>1.040</td>
</tr>
<tr>
<td>15</td>
<td>1.063</td>
<td>1.066</td>
<td>1.060</td>
<td>1.063</td>
</tr>
<tr>
<td>20</td>
<td>1.070</td>
<td>1.071</td>
<td>1.073</td>
<td>1.071</td>
</tr>
<tr>
<td>25</td>
<td>1.075</td>
<td>1.073</td>
<td>1.069</td>
<td>1.072</td>
</tr>
<tr>
<td>30</td>
<td>1.066</td>
<td>1.063</td>
<td>1.065</td>
<td>1.065</td>
</tr>
<tr>
<td>35</td>
<td>1.056</td>
<td>1.055</td>
<td>1.058</td>
<td>1.056</td>
</tr>
<tr>
<td>40</td>
<td>1.067</td>
<td>1.068</td>
<td>1.066</td>
<td>1.067</td>
</tr>
<tr>
<td>45</td>
<td>1.066</td>
<td>1.061</td>
<td>1.056</td>
<td>1.061</td>
</tr>
</tbody>
</table>
Tabla 19. Datos primarios del perfil de disolución del fármaco con PAM-18 K2 a 50% en el medio a pH 1,2 y fuerza iónica 0,15 M.

<table>
<thead>
<tr>
<th>Tiempo (min)</th>
<th>Absorbancia vasos</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1.039</td>
<td>1.053</td>
<td>1.006</td>
<td>0.988</td>
<td>1.024</td>
<td>1.129</td>
</tr>
<tr>
<td>10</td>
<td>1.126</td>
<td>1.109</td>
<td>1.050</td>
<td>1.052</td>
<td>1.092</td>
<td>1.133</td>
</tr>
<tr>
<td>15</td>
<td>1.144</td>
<td>1.118</td>
<td>1.065</td>
<td>1.068</td>
<td>1.103</td>
<td>1.141</td>
</tr>
<tr>
<td>20</td>
<td>1.161</td>
<td>1.130</td>
<td>1.071</td>
<td>1.080</td>
<td>1.110</td>
<td>1.151</td>
</tr>
<tr>
<td>25</td>
<td>1.165</td>
<td>1.136</td>
<td>1.076</td>
<td>1.086</td>
<td>1.123</td>
<td>1.156</td>
</tr>
<tr>
<td>30</td>
<td>1.165</td>
<td>1.142</td>
<td>1.083</td>
<td>1.092</td>
<td>1.128</td>
<td>1.163</td>
</tr>
<tr>
<td>35</td>
<td>1.174</td>
<td>1.153</td>
<td>1.093</td>
<td>1.101</td>
<td>1.139</td>
<td>1.177</td>
</tr>
<tr>
<td>40</td>
<td>1.184</td>
<td>1.159</td>
<td>1.098</td>
<td>1.111</td>
<td>1.150</td>
<td>1.177</td>
</tr>
<tr>
<td>45</td>
<td>1.190</td>
<td>1.169</td>
<td>1.106</td>
<td>1.115</td>
<td>1.151</td>
<td>1.197</td>
</tr>
</tbody>
</table>

Tabla 20. Datos primarios del perfil de disolución del fármaco con PAM-18 K2 a 100% en el medio a pH 1,2 y fuerza iónica 0,15 M.

<table>
<thead>
<tr>
<th>Tiempo (min)</th>
<th>Absorbancia vasos</th>
<th></th>
<th></th>
<th></th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1.084</td>
<td>1.069</td>
<td>1.020</td>
<td>1.058</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1.105</td>
<td>1.083</td>
<td>1.100</td>
<td>1.096</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1.107</td>
<td>1.086</td>
<td>1.109</td>
<td>1.101</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1.113</td>
<td>1.093</td>
<td>1.117</td>
<td>1.108</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1.128</td>
<td>1.103</td>
<td>1.123</td>
<td>1.118</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1.135</td>
<td>1.102</td>
<td>1.128</td>
<td>1.122</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>1.126</td>
<td>1.103</td>
<td>1.131</td>
<td>1.120</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>1.134</td>
<td>1.115</td>
<td>1.137</td>
<td>1.129</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>1.141</td>
<td>1.120</td>
<td>1.149</td>
<td>1.137</td>
<td></td>
</tr>
</tbody>
</table>
Tabla 21. Datos primarios del perfil de disolución del fármaco con PAM-18 K2 a 150% en el medio a pH 1,2 y fuerza iónica 0,15 M.

<table>
<thead>
<tr>
<th>Tiempo (min)</th>
<th>Absorbancia vasos</th>
<th></th>
<th></th>
<th></th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.952</td>
<td>0.976</td>
<td>1.004</td>
<td>0.977</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.996</td>
<td>0.969</td>
<td>0.999</td>
<td>0.988</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1.010</td>
<td>0.974</td>
<td>1.005</td>
<td>0.996</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.999</td>
<td>0.975</td>
<td>1.006</td>
<td>0.993</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1.011</td>
<td>0.989</td>
<td>1.013</td>
<td>1.004</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1.012</td>
<td>0.986</td>
<td>1.010</td>
<td>1.003</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>1.020</td>
<td>0.994</td>
<td>1.019</td>
<td>1.011</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>1.026</td>
<td>1.003</td>
<td>1.025</td>
<td>1.018</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>1.033</td>
<td>1.005</td>
<td>1.026</td>
<td>1.021</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 22. Datos primarios del perfil de disolución del fármaco con PAM-18 K2 a 50% en el medio a pH 7,4 y fuerza iónica 0,15 M.

<table>
<thead>
<tr>
<th>Tiempo (min)</th>
<th>Absorbancia vasos</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.887</td>
<td>0.876</td>
<td>0.891</td>
<td>0.914</td>
<td>0.918</td>
<td>0.897</td>
<td>0.882</td>
</tr>
<tr>
<td>10</td>
<td>1.009</td>
<td>0.974</td>
<td>1.019</td>
<td>1.024</td>
<td>1.022</td>
<td>1.011</td>
<td>1.010</td>
</tr>
<tr>
<td>15</td>
<td>1.032</td>
<td>1.004</td>
<td>1.042</td>
<td>1.056</td>
<td>1.040</td>
<td>1.033</td>
<td>1.035</td>
</tr>
<tr>
<td>20</td>
<td>1.034</td>
<td>1.004</td>
<td>1.044</td>
<td>1.052</td>
<td>1.041</td>
<td>1.046</td>
<td>1.037</td>
</tr>
<tr>
<td>25</td>
<td>1.038</td>
<td>1.005</td>
<td>1.048</td>
<td>1.059</td>
<td>1.045</td>
<td>1.044</td>
<td>1.040</td>
</tr>
<tr>
<td>30</td>
<td>1.030</td>
<td>1.004</td>
<td>1.037</td>
<td>1.054</td>
<td>1.044</td>
<td>1.040</td>
<td>1.035</td>
</tr>
<tr>
<td>35</td>
<td>1.031</td>
<td>1.000</td>
<td>1.037</td>
<td>1.048</td>
<td>1.043</td>
<td>1.041</td>
<td>1.033</td>
</tr>
<tr>
<td>40</td>
<td>1.025</td>
<td>1.001</td>
<td>1.038</td>
<td>1.051</td>
<td>1.053</td>
<td>1.042</td>
<td>1.035</td>
</tr>
<tr>
<td>45</td>
<td>1.023</td>
<td>0.997</td>
<td>1.038</td>
<td>1.055</td>
<td>1.039</td>
<td>1.041</td>
<td>1.030</td>
</tr>
</tbody>
</table>
Tabla 23. Datos primarios del perfil de disolución del fármaco con PAM-18 K2 a 100% en el medio a pH 7,4 y fuerza iónica 0,15 M.

<table>
<thead>
<tr>
<th>Tiempo (min)</th>
<th>Absorbancia vasos</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>Promedio</td>
</tr>
<tr>
<td>5</td>
<td>0.914</td>
<td>0.927</td>
<td>0.929</td>
<td>0.923</td>
</tr>
<tr>
<td>10</td>
<td>1.013</td>
<td>1.020</td>
<td>1.017</td>
<td>1.017</td>
</tr>
<tr>
<td>15</td>
<td>1.022</td>
<td>1.038</td>
<td>1.045</td>
<td>1.035</td>
</tr>
<tr>
<td>20</td>
<td>1.030</td>
<td>1.043</td>
<td>1.051</td>
<td>1.041</td>
</tr>
<tr>
<td>25</td>
<td>1.034</td>
<td>1.039</td>
<td>1.031</td>
<td>1.035</td>
</tr>
<tr>
<td>30</td>
<td>1.036</td>
<td>1.060</td>
<td>1.052</td>
<td>1.049</td>
</tr>
<tr>
<td>35</td>
<td>1.050</td>
<td>1.052</td>
<td>1.035</td>
<td>1.046</td>
</tr>
<tr>
<td>40</td>
<td>1.045</td>
<td>1.055</td>
<td>1.040</td>
<td>1.047</td>
</tr>
<tr>
<td>45</td>
<td>1.026</td>
<td>1.059</td>
<td>1.038</td>
<td>1.041</td>
</tr>
</tbody>
</table>

Tabla 24. Datos primarios del perfil de disolución del fármaco con PAM-18 K2 a 150% en el medio a pH 7,4 y fuerza iónica 0,15 M.

<table>
<thead>
<tr>
<th>Tiempo (min)</th>
<th>Absorbancia vasos</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>Promedio</td>
</tr>
<tr>
<td>5</td>
<td>0.914</td>
<td>1.002</td>
<td>0.889</td>
<td>0.935</td>
</tr>
<tr>
<td>10</td>
<td>1.023</td>
<td>1.046</td>
<td>1.029</td>
<td>1.033</td>
</tr>
<tr>
<td>15</td>
<td>1.061</td>
<td>1.077</td>
<td>1.062</td>
<td>1.067</td>
</tr>
<tr>
<td>20</td>
<td>1.049</td>
<td>1.073</td>
<td>1.062</td>
<td>1.061</td>
</tr>
<tr>
<td>25</td>
<td>1.053</td>
<td>1.070</td>
<td>1.067</td>
<td>1.063</td>
</tr>
<tr>
<td>30</td>
<td>1.051</td>
<td>1.072</td>
<td>1.071</td>
<td>1.065</td>
</tr>
<tr>
<td>35</td>
<td>1.052</td>
<td>1.074</td>
<td>1.069</td>
<td>1.065</td>
</tr>
<tr>
<td>40</td>
<td>1.053</td>
<td>1.072</td>
<td>1.068</td>
<td>1.064</td>
</tr>
<tr>
<td>45</td>
<td>1.057</td>
<td>1.071</td>
<td>1.071</td>
<td>1.066</td>
</tr>
</tbody>
</table>
Tabla 25. Datos primarios del perfil de disolución del fármaco con Eudragit E-100 Cl a 50% en el medio a pH 1,2 y fuerza iónica 0,15 M.

<table>
<thead>
<tr>
<th>Tiempo (min)</th>
<th>Absorbancia vasos</th>
<th></th>
<th></th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1.145</td>
<td>1.065</td>
<td>1.043</td>
<td>1.084</td>
</tr>
<tr>
<td>10</td>
<td>1.180</td>
<td>1.134</td>
<td>1.125</td>
<td>1.146</td>
</tr>
<tr>
<td>15</td>
<td>1.195</td>
<td>1.149</td>
<td>1.138</td>
<td>1.161</td>
</tr>
<tr>
<td>20</td>
<td>1.209</td>
<td>1.159</td>
<td>1.151</td>
<td>1.173</td>
</tr>
<tr>
<td>25</td>
<td>1.221</td>
<td>1.168</td>
<td>1.157</td>
<td>1.182</td>
</tr>
<tr>
<td>30</td>
<td>1.223</td>
<td>1.173</td>
<td>1.167</td>
<td>1.188</td>
</tr>
<tr>
<td>35</td>
<td>1.242</td>
<td>1.183</td>
<td>1.185</td>
<td>1.203</td>
</tr>
<tr>
<td>40</td>
<td>1.236</td>
<td>1.193</td>
<td>1.188</td>
<td>1.206</td>
</tr>
<tr>
<td>45</td>
<td>1.246</td>
<td>1.192</td>
<td>1.203</td>
<td>1.214</td>
</tr>
</tbody>
</table>

Tabla 26. Datos primarios del perfil de disolución del fármaco con Eudragit E-100 Cl a 100% en el medio a pH 1,2 y fuerza iónica 0,15 M.

<table>
<thead>
<tr>
<th>Tiempo (min)</th>
<th>Absorbancia vasos</th>
<th></th>
<th></th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1.042</td>
<td>1.061</td>
<td>1.087</td>
<td>1.063</td>
</tr>
<tr>
<td>10</td>
<td>1.140</td>
<td>1.137</td>
<td>1.147</td>
<td>1.141</td>
</tr>
<tr>
<td>15</td>
<td>1.160</td>
<td>1.153</td>
<td>1.164</td>
<td>1.159</td>
</tr>
<tr>
<td>20</td>
<td>1.171</td>
<td>1.165</td>
<td>1.176</td>
<td>1.171</td>
</tr>
<tr>
<td>25</td>
<td>1.178</td>
<td>1.171</td>
<td>1.188</td>
<td>1.179</td>
</tr>
<tr>
<td>30</td>
<td>1.192</td>
<td>1.181</td>
<td>1.199</td>
<td>1.191</td>
</tr>
<tr>
<td>35</td>
<td>1.191</td>
<td>1.187</td>
<td>1.206</td>
<td>1.195</td>
</tr>
<tr>
<td>40</td>
<td>1.201</td>
<td>1.204</td>
<td>1.205</td>
<td>1.203</td>
</tr>
<tr>
<td>45</td>
<td>1.223</td>
<td>1.204</td>
<td>1.218</td>
<td>1.215</td>
</tr>
</tbody>
</table>
Tabla 27. Datos primarios del perfil de disolución del fármaco con Eudragit E-100 Cl a 150% en el medio a pH 1,2 y fuerza iónica 0,15 M.

<table>
<thead>
<tr>
<th>Tiempo (min)</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1.082</td>
<td>1.041</td>
<td>1.011</td>
<td>1.045</td>
</tr>
<tr>
<td>10</td>
<td>1.172</td>
<td>1.123</td>
<td>1.101</td>
<td>1.132</td>
</tr>
<tr>
<td>15</td>
<td>1.191</td>
<td>1.134</td>
<td>1.116</td>
<td>1.147</td>
</tr>
<tr>
<td>20</td>
<td>1.194</td>
<td>1.138</td>
<td>1.118</td>
<td>1.150</td>
</tr>
<tr>
<td>25</td>
<td>1.206</td>
<td>1.147</td>
<td>1.124</td>
<td>1.159</td>
</tr>
<tr>
<td>30</td>
<td>1.211</td>
<td>1.154</td>
<td>1.132</td>
<td>1.166</td>
</tr>
<tr>
<td>35</td>
<td>1.221</td>
<td>1.170</td>
<td>1.142</td>
<td>1.178</td>
</tr>
<tr>
<td>40</td>
<td>1.236</td>
<td>1.166</td>
<td>1.144</td>
<td>1.182</td>
</tr>
<tr>
<td>45</td>
<td>1.234</td>
<td>1.171</td>
<td>1.156</td>
<td>1.187</td>
</tr>
</tbody>
</table>

Tabla 28. Datos primarios del perfil de disolución del fármaco con Eudragit E-100 Cl a 50% en el medio a pH 7,4 y fuerza iónica 0,15 M.

<table>
<thead>
<tr>
<th>Tiempo (min)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.612</td>
<td>0.719</td>
<td>0.684</td>
<td>0.672</td>
</tr>
<tr>
<td>10</td>
<td>0.638</td>
<td>0.591</td>
<td>0.65</td>
<td>0.626</td>
</tr>
<tr>
<td>15</td>
<td>0.712</td>
<td>0.709</td>
<td>0.68</td>
<td>0.700</td>
</tr>
<tr>
<td>20</td>
<td>0.571</td>
<td>0.611</td>
<td>0.570</td>
<td>0.584</td>
</tr>
<tr>
<td>25</td>
<td>0.571</td>
<td>0.621</td>
<td>0.542</td>
<td>0.578</td>
</tr>
<tr>
<td>30</td>
<td>0.539</td>
<td>0.577</td>
<td>0.511</td>
<td>0.542</td>
</tr>
<tr>
<td>35</td>
<td>0.596</td>
<td>0.494</td>
<td>0.48</td>
<td>0.523</td>
</tr>
<tr>
<td>40</td>
<td>0.696</td>
<td>0.505</td>
<td>0.492</td>
<td>0.564</td>
</tr>
<tr>
<td>45</td>
<td>0.599</td>
<td>0.522</td>
<td>0.501</td>
<td>0.541</td>
</tr>
</tbody>
</table>
Tabla 29. Datos primarios del perfil de disolución del fármaco con Eudragit E-100 Cl a 100% en el medio a pH 1,2 y fuerza iónica 0,15 M.

<table>
<thead>
<tr>
<th>Tiempo (min)</th>
<th>Absorbancia vasos</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>Promedio</td>
</tr>
<tr>
<td>5</td>
<td>0.629</td>
<td>0.725</td>
<td>0.652</td>
<td>0.669</td>
</tr>
<tr>
<td>10</td>
<td>0.671</td>
<td>0.691</td>
<td>0.671</td>
<td>0.678</td>
</tr>
<tr>
<td>15</td>
<td>0.638</td>
<td>0.684</td>
<td>0.727</td>
<td>0.683</td>
</tr>
<tr>
<td>20</td>
<td>0.672</td>
<td>0.721</td>
<td>0.696</td>
<td>0.696</td>
</tr>
<tr>
<td>25</td>
<td>0.762</td>
<td>0.748</td>
<td>0.791</td>
<td>0.767</td>
</tr>
<tr>
<td>30</td>
<td>0.681</td>
<td>0.661</td>
<td>0.690</td>
<td>0.677</td>
</tr>
<tr>
<td>35</td>
<td>0.716</td>
<td>0.719</td>
<td>0.782</td>
<td>0.739</td>
</tr>
<tr>
<td>40</td>
<td>0.699</td>
<td>0.702</td>
<td>0.711</td>
<td>0.704</td>
</tr>
<tr>
<td>45</td>
<td>0.733</td>
<td>0.721</td>
<td>0.735</td>
<td>0.730</td>
</tr>
</tbody>
</table>