Propuesta de una metodología de planeación de la demanda y de los inventarios de medicamentos y dispositivos médicos de uso en pacientes hospitalizados en una IPS de cuarto nivel

Presentado Por:
JOSE ANDRES ROSAS OSPINA
EMERY LEANDRO CORTES SALAMANCA

Directora
ING. ANGELICA BURBANO Ph. D

FACULTAD DE INGENIERÍA
MAESTRIA EN INGENIERIA INDUSTRIAL
UNIVERSIDAD ICESI
CALI
2013
CONTENIDO

<table>
<thead>
<tr>
<th></th>
<th>Pag</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>MARCO DE REFERENCIA</td>
</tr>
<tr>
<td>1.1</td>
<td>MARCO CONTEXTUAL</td>
</tr>
<tr>
<td>1.2</td>
<td>MARCO TEORICO</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Medidas descriptivas</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Clasificación ABC</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Pronósticos</td>
</tr>
<tr>
<td>1.2.4</td>
<td>Gestión de inventarios</td>
</tr>
<tr>
<td>2.</td>
<td>EL PROBLEMA</td>
</tr>
<tr>
<td>3.</td>
<td>OBJETIVOS DEL PROYECTO</td>
</tr>
<tr>
<td>3.1</td>
<td>OBJETIVO GENERAL:</td>
</tr>
<tr>
<td>3.2</td>
<td>OBJETIVOS ESPECÍFICOS:</td>
</tr>
<tr>
<td>4.</td>
<td>METODOLOGIA</td>
</tr>
<tr>
<td>5.</td>
<td>ALCANCE Y LIMITACIONES DEL PROYECTO</td>
</tr>
<tr>
<td>5.1</td>
<td>ALCANCE DEL PROYECTO</td>
</tr>
<tr>
<td>5.2</td>
<td>LIMITACIONES DEL PROYECTO</td>
</tr>
<tr>
<td>6.</td>
<td>CONOCER Y ANALIZAR LA DEMANDA DE MEDICAMENTOS Y DISPOSITIVOS MÉDICOS DE USO EN PACIENTES HOSPITALIZADOS EN UNA IPS DE CUARTO NIVEL.</td>
</tr>
<tr>
<td>6.1</td>
<td>RECOLECCIÓN DE LOS DATOS</td>
</tr>
<tr>
<td>6.2</td>
<td>ORGANIZAR LOS DATOS</td>
</tr>
<tr>
<td>6.3</td>
<td>ANALIZAR EL COMPORTAMIENTO DE LOS DATOS</td>
</tr>
<tr>
<td>7.</td>
<td>CLASIFICAR Y AGRUPAR LOS MEDICAMENTOS Y DISPOSITIVOS MÉDICOS DE USO HOSPITALARIO DE LA IPS DE CUARTO NIVEL DE ACUERDO A LA CATEGORIZACIÓN DE LA DEMANDA.</td>
</tr>
<tr>
<td>7.1</td>
<td>CLASIFICACIÓN DE LOS PRODUCTOS</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Clasificación tipo de producto</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Metodología de análisis ABC por alta rotación</td>
</tr>
<tr>
<td>7.1.3</td>
<td>Metodología clasificación por importancia relevante</td>
</tr>
<tr>
<td>7.1.4</td>
<td>Clasificación ABC consolidada</td>
</tr>
<tr>
<td>7.1.5</td>
<td>Panorama general clasificación ABC</td>
</tr>
<tr>
<td>7.2</td>
<td>CATEGORIZACIÓN DE LA DEMANDA</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Nivel I: Categorización por tipo de demanda</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Nivel II: Categorización por coeficiente de variación</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Nivel III: Categorización por tendencia y coeficiente de variación</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Nivel IV: Esquema de categorización para demanda intermitente</td>
</tr>
<tr>
<td>7.2.5</td>
<td>Panorama general de la categorización de la demanda</td>
</tr>
</tbody>
</table>
8. DESARROLLO DE LA PROPUESTA PARA SELECCIONAR Y ESCOGER ALTERNATIVAS DE PRONÓSTICOS Y DE MODELOS DE INVENTARIOS PARA PLANEAR LA DEMANDA DE MEDICAMENTOS Y DISPOSITIVOS MÉDICOS DE USO HOSPITALARIO EN UNA IPS DE CUARTO NIVEL

9. EVALUAR Y COMPARAR LA PROPUESTA EXPUESTA FREnte AL MODELO ACTUAL UTILIZADO EN LA IPS DE CUARTO NIVEL.

10. CONCLUSIONES

11. RECOMENDACIONES

12. REFERENCIAS BIBLIOGRÁFICAS

13. ANEXOS
LISTADO DE TABLAS

Pag.

TABLA 1. RECOLECCIÓN DE DATOS .. 41
TABLA 2. ORGANIZACIÓN DE DATOS ... 42
TABLA 3. ANÁLISIS DESCRIPTIVO DE DEMANDA .. 43
TABLA 4. CLASIFICACIÓN POR TIPO DE PRODUCTO .. 46
TABLA 5. CLASIFICACIÓN ABC DE MEDICAMENTOS Y DISPOSITIVOS MÉDICOS POR ROTACIÓN 49
TABLA 6. ANÁLISIS DE PARETO X ROTACIÓN PARA 1599 PRODUCTOS ... 50
TABLA 7. CLASIFICACIÓN ABC POR IMPORTANCIA .. 52
TABLA 8. CLASIFICACIÓN ABC CONSOLIDADO .. 53
TABLA 9. ANÁLISIS DE PARETO CONSOLIDADO 1599 PRODUCTOS ... 54
TABLA 10. PRODUCTOS TIPO D QUE SE RECLASIFICARON A CLASE A POR IMPORTANCIA RELEVANTE 55
TABLA 11. PANORAMA GENERAL DE LA CLASIFICACIÓN ABC PARA LOS 1.599 PRODUCTOS ENTRE MEDICAMENTOS Y DISPOSITIVOS MÉDICOS ... 56
TABLA 12. LISTADO DE PRODUCTOS QUE PRESENTAN DEMANDA CONTINUA ... 58
TABLA 13. LISTADO DE PRODUCTOS QUE PRESENTAN DEMANDA INTERMITENTE 59
TABLA 14. CÁLCULO DEL COEFICIENTE DE VARIACIÓN EN PRODUCTOS QUE PRESENTAN DEMANDA CONTINUA ... 60
TABLA 15. CÁLCULO DEL COEFICIENTE DE VARIACIÓN CUADRÁTICO PARA PRODUCTOS QUE PRESENTAN DEMANDA INTERMITENTE ... 61
TABLA 16. GENERACIÓN ALEATORIA DE PRODUCTOS PARA EVALUAR ESTACIONALIDAD 62
TABLA 17. CATEGORIZACIÓN POR TENDENCIA Y POR COEFICIENTE DE VARIACIÓN 64
TABLA 18. ESQUEMA DE CATEGORIZACIÓN DE PATRONES DE COMPORTAMIENTO DE DEMANDA INTERMITENTE ... 66
TABLA 19. PANORAMA GENERAL DE LA CATEGORIZACIÓN DE LA DEMANDA DE LOS PRODUCTOS DE LA IPS DE CUARTO NIVEL .. 67
TABLA 20. ESQUEMA DE PLANEACIÓN DE LA DEMANDA Y DE LOS INVENTARIOS DE MEDICAMENTOS Y DISPOSITIVOS MÉDICOS DE USO EN PACIENTES HOSPITALIZADOS EN UNA IPS DE CUARTO NIVEL 73
TABLA 21. PRODUCTOS ELEGIDOS PARA PRONOSTICAR Y ENCONTRARLE UN MODELO DE INVENTARIOS 76
TABLA 22. ANÁLISIS CONSOLIDADO DE LOS MODELOS DE PRONÓSTICO .. 77
TABLA 23. PLANTILLA DE SOPORTE MEJOR MODELO DE PRONÓSTICO PARA EL PRODUCTO MERONEM VIAL X 1G .. 78
TABLA 24. RESUMEN CONSOLIDADO DE MODELO DE PRONÓSTICO PARA LOS 9 PRODUCTOS SELECCIONADOS .. 81
TABLA 25. DESARROLLO DE LOS MODELOS DE GESTIÓN DE INVENTARIO PROPUESTO POR SIPPER PARA LOS PRODUCTOS CON DEMANDA CONTINUA E INTERMITENTE .. 84
TABLA 26. COMPARACIÓN DE MÉTODOS .. 88
TABLA 27. COMPARACIÓN DE POLÍTICA DE NIVEL DE SERVICIO DEL 65% RESPECTO A LA PROPUESTA ACTUAL .. 89
LISTADO DE ILUSTRACIONES

ILUSTRACIÓN 1. ORGANIGRAMA DEPARTAMENTO SUMINISTROS Y SERVICIOS FARMACÉUTICOS 10
ILUSTRACIÓN 2. PATRÓN DE COMPORTAMIENTO DE DEMANDA CON TENDENCIA 17
ILUSTRACIÓN 3. PATRÓN DE COMPORTAMIENTO DE DEMANDA ESTACIONAL ... 18
ILUSTRACIÓN 4. PATRÓN DE COMPORTAMIENTO DE DEMANDA CÍCLICA ... 18
ILUSTRACIÓN 5. PATRÓN DE COMPORTAMIENTO DE DEMANDA ERRÁTICA .. 19
ILUSTRACIÓN 7. DEMANDA DE LENTO MOVIMIENTO .. 23
ILUSTRACIÓN 8. DEMANDA ERRÁTICA ... 24
ILUSTRACIÓN 9. DEMANDA INTERMITENTE GRUMOSA ... 24
ILUSTRACIÓN 10. DEMANDA INTERMITENTE .. 25
ILUSTRACIÓN 11. ESTRUCTURA DE DECISIONES DE TIEMPO ... 31
ILUSTRACIÓN 12. GRAFICA DE REABASTECIMIENTO CONJUNTO CON SISTEMA DE REVISIÓN PERIÓDICO 35
ILUSTRACIÓN 13. ANÁLISIS DE DEMANDA PARA VALIDAR NO ESTACIONALIDAD EN SERIES DE TIEMPO 63
ILUSTRACIÓN 15. INTEGRACIÓN PROPUESTA. .. 91
<table>
<thead>
<tr>
<th>ECUACIÓN</th>
<th>ECUACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. PROMEDIO</td>
<td>11</td>
</tr>
<tr>
<td>2. VARIANZA</td>
<td>12</td>
</tr>
<tr>
<td>3. CALCULAR LA DESVIACIÓN ESTÁNDAR CUANDO SE TIENE LA VARIANZA</td>
<td>12</td>
</tr>
<tr>
<td>4. DESVIACIÓN ESTÁNDAR</td>
<td>12</td>
</tr>
<tr>
<td>5. COEFICIENTE DE VARIACIÓN</td>
<td>13</td>
</tr>
<tr>
<td>6. VARIACIÓN MÓVIL</td>
<td>20</td>
</tr>
<tr>
<td>7. INTERVALO PROMEDIO ENTRE DEMANDAS</td>
<td>22</td>
</tr>
<tr>
<td>8. COEFICIENTE DE VARIACIÓN CUADRADO</td>
<td>23</td>
</tr>
<tr>
<td>9. DEMANDA PROMEDIO</td>
<td>23</td>
</tr>
<tr>
<td>10. ERROR MEDIO ABSOLUTO</td>
<td>26</td>
</tr>
<tr>
<td>11. ERROR CUADRADO MEDIO</td>
<td>27</td>
</tr>
<tr>
<td>12. ERROR PORCENTUAL MEDIO ABSOLUTO</td>
<td>27</td>
</tr>
<tr>
<td>13. ERROR MEDIO</td>
<td>27</td>
</tr>
<tr>
<td>14. SEÑAL DE SEGUIMIENTO</td>
<td>27</td>
</tr>
<tr>
<td>15. SUAVIZACIÓN DEL ERROR</td>
<td>28</td>
</tr>
<tr>
<td>16. ERROR ACUMULADO EN EL PERÍODO T</td>
<td>28</td>
</tr>
<tr>
<td>17. VALOR CRÍTICO</td>
<td>28</td>
</tr>
<tr>
<td>18. SISTEMA DE REVISIÓN CONTINUA</td>
<td>32</td>
</tr>
<tr>
<td>19. CANTIDAD ECONÓMICA DE PEDIDO</td>
<td>33</td>
</tr>
<tr>
<td>20. PUNTO DE REORDEN</td>
<td>33</td>
</tr>
<tr>
<td>21. INVENTARIO DE SEGURIDAD CON FACTOR DE SEGURIDAD ELEGIDO DE ACUERDO AL NIVEL DE SERVICIO DESEADO</td>
<td>33</td>
</tr>
<tr>
<td>22. INVENTARIO DE SEGURIDAD CUANDO LA DEMANDA EN EL TIEMPO DE ENTREGA PRESENTA DISTRIBUCIÓN NORMAL</td>
<td>33</td>
</tr>
<tr>
<td>23. PUNTO DE REORDEN CON VARIABLE NORMAL ESTÁNDAR</td>
<td>33</td>
</tr>
<tr>
<td>24. INVENTARIO META DE MODELO (S,T)</td>
<td>34</td>
</tr>
<tr>
<td>25. PERÍODO DE REVISIÓN</td>
<td>34</td>
</tr>
</tbody>
</table>
INTRODUCCIÓN

El presente trabajo tiene como objetivo servir como herramienta de consulta y de orientación para profesionales que se desempeñan en las áreas de planeación y compras en una entidad de salud para afrontar los retos que se les presentan al momento de garantizar la continuidad de la cadena de suministros de medicamentos y dispositivos médicos con los fines de aumentar el nivel de servicio a sus pacientes y de preservar las finanzas de sus instituciones.

En el desarrollo del trabajo de grado se evidenció que por medio de la referencia que realizan entre las diferentes instituciones prestadoras de salud de la región del Valle del Cauca que no se ha profundizado en el desarrollo de herramientas que les permitan a los planeadores o compradores mejorar el nivel de compras de medicamentos y dispositivos médicos versus la demanda de pacientes atendidos por el sin número de condiciones clínicas de los pacientes, esto ha llevado a que cada institución de salud desarrollar mecanismos y estrategias propias para garantizar las existencias de estos productos llevando en muchas ocasiones a la no prestación adecuada de servicio o en su defecto a pérdidas considerables de dinero por productos vencidos o que han quedado obsoletos.

Para obtener un adecuado esquema de planeación de la demanda de medicamentos y dispositivos médicos se debe tener en cuenta factores internos como la condición clínica y la fisonomía de los pacientes, criterios médicos, procedimientos, personal de planta, conocimiento de las instalaciones, identificar la capacidad de almacenamiento, equipos disponibles, tener una integración de tecnología de administración de datos y comunicación interconectada, una cultura organizacional, estructura organizacional, un entorno laboral proclive a la armonía y buena comunicación, indispensable una buena comunicación entre el área médico-asistencial y el departamento de planeación y factores externos como aspectos sociales y de orden público que rodean la región donde se presta el servicio de atención al paciente, proveedores locales, nacionales e internacionales, plazos de entrega.
1. MARCO DE REFERENCIA

1.1 MARCO CONTEXTUAL

El trabajo de grado se desarrolla en su totalidad en las instalaciones de la IPS de cuarto nivel\(^1\), con la colaboración del departamento de suministros que compone las áreas de compras, inventarios y servicios farmacéuticos.

La IPS de cuarto nivel es una entidad privada, sin ánimo de lucro, oficialmente constituida el 25 de Noviembre de 1982, derivando su capital de donaciones del sector privado colombiano. Abrió sus puertas en la sede del barrio Centenario, el 3 de marzo de 1986; en 1990 inició la construcción de la planta física actual, cuya inauguración oficial se llevó a cabo el 7 de julio de 1994, en la ceremonia se contó con la presencia del señor presidente de la República, doctor César Gaviria Trujillo, los benefactores, las directivas, el cuerpo médico, los proveedores y todos los empleados de la clínica. Desde entonces ha prestado un invaluable e ininterrumpido servicio que cumple con los máximos estándares de calidad, que le han valido el reconocimiento a nivel nacional e internacional.

Reconocida por la revista Economía de Chile en el año 2013 como la mejor institución de salud de Colombia y ocupa el cuarto puesto a nivel de Latinoamérica.

La IPS de cuarto nivel cuenta con la Unidad de Cuidados Intensivos más grande del país, además cuenta con una amplia disponibilidad de camas para la atención de la población del Suroccidente Colombiano distribuidas de la siguiente manera:

- **UCI\(^2\) Adultos**: 60 camas
- **UCI Pediátrica**: 20 camas
- **UCI Neonatal**: 20 cunas
- **UACO\(^3\)**: 9 camas
- **UCIN\(^4\)**: 40 camas

\(^1\) Institución prestadora de salud, esta se subdivide en 4 niveles de complejidad, comienza desde el nivel uno que es la prestación de servicio de salud básico hasta el cuarto nivel que incluyen especialidades tales como neurocirugía, cirugía vascular, neumología, nefrología, dermatología, etc. con atención por especialista las 24 horas, consulta, servicio de urgencias, radiología intervencionista, medicina nuclear, unidades especiales como cuidados intensivos y unidad renal. Desde el nivel uno que es la prestación de servicio de salud básico hasta el cuarto nivel que incluyen especialidades tales como neurocirugía, cirugía vascular, neumología, nefrología, dermatología, etc. con atención por especialista las 24 horas, consulta, servicio de urgencias, radiología intervencionista, medicina nuclear, unidades especiales como cuidados intensivos y unidad renal.

\(^2\) Unidad de Cuidados Intensivos

\(^3\) Unidad de Alta Complejidad Obstétrica
UTMO\(^5\): 13 camas
PARTOS: 11 camas
Hospitalización: 263 camas
Hospitalización VIP: 26 camas

Total de camas servicio: 462

En la actualidad la IPS de cuarto nivel cuenta con 9 Servicios Farmacéuticos, en el organigrama cada servicio farmacéutico cuenta con un SP\(^6\) y QF\(^7\) a excepción del servicio farmacéutico de especialidades ambulatorias, los cuales suplen las necesidades de abastecimiento de dispositivos médicos y medicamentos bajo las solicitudes médico-asistenciales. Este Servicio Farmacéutico cuenta con la infraestructura adecuada, el recurso humano idóneo y el portafolio de productos suficiente para la dispensación de dispositivos médicos y medicamentos que garanticen la atención de los 462 pacientes que se encuentran hospitalizados en promedio día.

\(^4\) Unidad de Cuidados Intermedios
\(^5\) Unidad de Trasplante de Medula Ósea
\(^6\) Supervisor de suministros
\(^7\) Químico farmacéutico
1.2 MARCO TEORICO

Para el desarrollo de este trabajo se hace indispensable que el lector tenga conocimientos estadísticos como los análisis de medidas descriptivas, pronósticos y gestión de inventarios.

1.2.1 Medidas descriptivas

Son valores numéricos calculados a partir de una muestra y que nos resume la información contenida en ella, estas medidas descriptivas se dividen en:

- Posición
- Centralización
- Dispersión
• Forma

Para efectos de este trabajo se emplea dos de estas medidas, la de centralización
y la de dispersión:

1.2.1.1 Centralización

Nos dan un centro de la distribución de frecuencias, es un valor que se puede
tomar como representativo de todos los datos. Hay diferentes modos para definir
el "centro" de las observaciones en un conjunto de datos, aquí se encuentran:

• Promedio
• Mediana
• Moda.

Dentro de este grupo nuestro interés está en el análisis del promedio de los datos.

Promedio

Es el cociente entre la suma de los datos sobre el número de observaciones, Si
xᵢ es el valor de la variable y nᵢ su frecuencia, se tiene que:

\[\bar{x} = \frac{\sum x_i n_i}{n} \]

1.2.1.2 Dispersión

Las medidas de tendencia central tienen como objetivo el sintetizar los datos en un
valor representativo, las medidas de dispersión nos dicen hasta qué punto estas
medidas de tendencia central son representativas como síntesis de la información.
Las medidas de dispersión cuantifican la separación, la dispersión, la variabilidad
de los valores de la distribución respecto al valor central. Distinguiamos entre
medidas de dispersión absolutas, que no son comparables entre diferentes
muestras y las relativas que nos permitirán comparar varias muestras. Aquí se
encuentran:

• Varianza
• Desviación Estándar
• Coeficiente de Variación
• Rango
Dentro de este grupo nuestro interés se analiza la Varianza, la Desviación Estándar y el Coeficiente de Variación.

Varianza \((s^2) \)

Es el promedio del cuadrado de las distancias entre cada observación y la media aritmética del conjunto de observaciones.

Ecuación 2. Varianza

\[
s^2 = \frac{\sum x_i^2 n_i}{n} - \bar{x}^2
\]

Si los datos están agrupados se utiliza las marcas de clase en lugar de \(X_i \).

Desviación estándar (S)

La varianza viene dada por las mismas unidades que la variable pero al cuadrado, para evitar este problema podemos usar como medida de dispersión, la desviación estándar que se define como la raíz cuadrada positiva de la varianza.

Ecuación 3. Calcular la desviación estándar cuando se tiene la varianza.

\[
S = \sqrt{s^2}
\]

Para estimar la desviación estándar de una población a partir de los datos de una muestra se utiliza la fórmula (desviación estándar):

Ecuación 4. Desviación estándar

\[
s = \sqrt{\frac{\sum (x_i - \bar{x})^2 n_i}{n-1}}
\]

Coeficiente de variación (CV)

Cuando se quiere comparar el grado de dispersión de dos distribuciones que no vienen dadas en las mismas unidades o que las medias no son iguales se utiliza el coeficiente de variación de Pearson que se define como el cociente entre la desviación estándar y el valor absoluto de la media aritmética.
Ecuación 5. Coeficiente de variación

\[CV = \frac{s}{\bar{x}} \]

CV representa el número de veces que la desviación estándar contiene a la media aritmética y por lo tanto cuanto mayor es CV mayor es la dispersión y menor la representatividad de la media.

1.2.2 Clasificación ABC

“Con el propósito de individualizar el sistema de control en proporción a la importancia de cada ítem, se debe establecer un nivel de importancia por cada uno de ellos. Esta clasificación se debe determinar en términos de costo del ítem, margen que genera, nivel de facturación o efecto en el nivel de servicio con los clientes y volumen de ventas”\(^8\).

El grupo A representan alrededor del 20% del total de los artículos, y el 80% del uso total del dinero.

El grupo B representan alrededor del 30% del total de los artículos, y el 15% del uso total del dinero.

El grupo C representan alrededor del 50% del total de los artículos, y el 5% del uso total del dinero\(^9\).

1.2.3 Pronósticos

Un pronóstico de ventas es una estimación o nivel esperado de ventas de una empresa, línea de productos o marca de producto, que abarca un periodo de tiempo determinado y un mercado específico\(^10\).

El pronóstico es una herramienta básica en la toma de decisiones de la administración y en particular, es un componente esencial para que cualquier sistema de inventarios tenga éxito\(^11\).

\(^11\) HILLER, F. LIEBERMAN, G. Introducción Investigación de Operaciones.
Los pronósticos de la demanda son importantes para la organización, ya que éstos proporcionan datos de entrada para la planeación y control de todas las áreas funcionales, incluyendo logística, marketing, producción y finanzas. Así mismo, indica, que la labor de predicción es un proceso que regularmente recae en el área de marketing o planeación económica o a un grupo especial conformado por la propia organización.

Características de los pronósticos

Los pronósticos presentan 5 características:

1. Normalmente están equivocados: El sistema de planeación debe ser lo suficientemente sólido para ser capaz de reaccionar ante errores de pronóstico no anticipados.

2. Un buen pronóstico es más que un simple número: Debido a que los pronósticos presentan equivocaciones, un buen pronóstico incluye cierta medida de error.

3. Los pronósticos agregados son más exactos: La variación de la muestra media es menor que la variación de población.

4. Entre más lejano sea el horizonte de pronóstico, la exactitud de la predicción disminuirá.

5. Los pronósticos no deben usarse para excluir información conocida: la compañía puede estar planeando una venta promocional especial para un artículo en particular, por lo que la demanda probablemente será mayor que la normal.

Horizonte de los pronósticos

El horizonte de tiempo de los pronósticos es una de las clasificaciones básicas de los pronósticos, éstos se pueden clasificar en 3 grandes dimensiones cronológicas: corto plazo, mediano plazo y largo plazo.

Los pronósticos a corto plazo son importantes para la planeación del día a día y regularmente son medidos en días o semanas. Este tipo de pronósticos son

prácticos para ventas, administración de inventarios, planes de producción que puedan generarse a partir de un sistema de planeación de requerimientos de materiales y para la planeación de requerimientos de recursos. Del mismo modo, sirven de apoyo para la programación de turnos considerando las preferencias y disponibilidades de trabajadores.

Los pronósticos a mediano plazo se miden en semanas y meses. Éstos contribuyen en la determinación de los patrones de ventas para las disponibilidades y requerimientos de trabajadores y familias de productos14.

Los pronósticos a largo plazo son necesarios principalmente para hacer planes de expansión de capital, seleccionar proyectos de I&D, lanzamiento de nuevos productos y formular la estrategia y objetivos a largo plazo. El elemento esencial en el pronóstico a largo plazo son las tendencias preponderantes. El problema es determinar cuánto y cómo pueden cambiar dichas tendencias y en qué forma serán distintas en el futuro las actitudes sociales y consumistas. Lo más probable es que en las tendencias a largo plazo haya cambios producidos por nuevos productos, nuevos servicios, nuevas estructuras competitivas, nuevas formas de organización y otras novedades, lo que hace difícil, pero también esencial la tarea de predecir15.

Clasificación de los pronósticos

Los pronósticos se pueden clasificar en cuatro tipos básicos: cualitativos, análisis de series de tiempo, relaciones causales y simulación16.

Métodos de pronósticos cualitativos

Los métodos cualitativos utilizan el juicio y la intuición, las encuestas o técnicas comparativas para generar estimados cuantitativos acerca del futuro. De igual forma, indica que la información que es utilizada para la integración del pronóstico por lo regular no es cuantitativa, es intangible y subjetiva. La información histórica no resulta ser muy relevante o útil para el pronóstico. La naturaleza de los métodos, los hacen difíciles de estandarizar y validar su precisión por no estar fundamentados en el método científico. Son métodos utilizados en su mayoría para mediano y largo plazo. Dentro de los métodos cualitativos encontramos:

15
investigación de mercados, agregados de la fuerza de venta, método Delphi, analogía histórica, pronósticos visionario17.

Métodos de pronósticos cuantitativos

Este tipo de métodos son objetivos y se define como aquellos en los que el pronóstico se deriva de un análisis de datos. Un método de series de tiempo es aquel que usa sólo valores pasados en cuanto al fenómeno que se desea predecir. Los modelos causales son aquellos que usan datos provenientes de fuentes distintas a las series que están pronosticando, es decir, pueden existir otras variables con valores que están vinculadas de alguna forma a lo que se está pronosticando. Dentro de los métodos cuantitativos encontramos: Promedio móvil, suavización exponencial, técnica Box-Jenkins, modelos matemáticos, descomposición en series de tiempo, análisis de regresión, modelos econométricos, modelos de insumos, simulación dinámica18.

Métodos para pronosticar series de tiempo

Las series de tiempo es un término que hace referencia a un conjunto de fenómenos físicos o económicos observados en puntos discretos de tiempo, normalmente espaciados equitativamente. La idea es que la información del patrón de observaciones pasadas puede inferirse y usarse para pronosticar valores futuros de las series.

El Modelo de series de tiempo es uno de los tipos de predicción cuantitativa más comunes y cuentan con dos elementos importantes: la serie de datos que se va a pronosticar y el período de tiempo a utilizarse. Un modelo de este tipo supone siempre que un patrón o combinación de patrones es recurrente a través del tiempo. De esta manera identificando y extrapolando dicho patrón, se pueden desarrollar pronósticos para periodos subsecuentes.

Las series de tiempo pueden ser continuas o intermitentes19.

Serie de tiempo continua

Es aquella serie de tiempo donde la ocurrencia de los eventos de la demanda se presenta de manera continua periodo a periodo de manera ininterrumpida.

En el análisis de series de tiempo se intenta aislar los patrones que surgen con mayor frecuencia. Estos incluyen los siguientes:\(^{20}\):

- Tendencia.
- Estacionalidad.
- Cíclico.
- Errático.

Tendencia

La tendencia de una serie de tiempo es el componente de largo plazo que representa el crecimiento o decrecimiento en la serie sobre un periodo amplio, se considerará que una serie de tiempo presenta tendencia cuando la pendiente sea mayor o menor al 10% respecto al promedio de los datos.

Ilustración 2. Patrón de comportamiento de demanda con tendencia

Fuente: Los autores

Variación estacional

Se refieren a las fluctuaciones periódicas que se observan en series de tiempo cuya frecuencia es menor a un año (trimestral, mensual, diaria, etc.), aproximadamente en las mismas fechas y casi con la misma intensidad. Las principales fuerzas que causan una variación estacional son las condiciones del tiempo.

Ilustración 3. Patrón de comportamiento de demanda estacional

Fuente: Los autores

Variación cíclica

Se refieren a las oscilaciones de larga duración alrededor de la curva de tendencia, los cuales pueden o no ser periódicos, es decir, pueden o no seguir caminos análogos en intervalos de tiempo iguales. Se caracterizan por tener lapsos de expansión y contracción. En general, los movimientos se consideran cíclicos solo si se produce en un intervalo de tiempo superior al año.

Ilustración 4. Patrón de comportamiento de demanda cíclica.

Fuente: Los autores
Errático

Es una variación irregular puede ser generada por factores de tipo económico, generalmente los efectos producen variaciones que solo duran un corto intervalo de tiempo. Aunque debe reconocerse que en ocasiones sus efectos sobre el comportamiento de una serie pueden ser tan intensos que fácilmente podrían dar lugar a un nuevo ciclo o a otros movimientos.

Ilustración 5. Patrón de comportamiento de demanda errática.

Fuente: Los autores

Clases de modelos de pronósticos para series continuas de tiempo

Dentro de los métodos cuantitativos de pronósticos de series de tiempo continuas encontramos los siguientes modelos:

1. Naive
2. Naive trend
3. Promedio doble móvil
4. Promedio móvil
5. Promedio móvil ponderado

6. Variación móvil.
7. Regresión lineal.
8. Regresión lineal móvil
10. Suavización exponencial doble.
11. Suavización exponencial triple Aditiva (Estacionalidad de Winter).

Modelo de promedio doble móvil:

Modelo que consiste en comparar dos promedios, el de la ventana (N) con el promedio de todos los datos, si la tendencia de los datos es creciente se toma el promedio de mayor valor y si la tendencia es decreciente se toma el promedio de menor valor.

Variación Móvil

Modelo de pronóstico basado en el principio de la variación de la demanda del último periodo D_t respecto a la demanda del periodo inmediatamente anterior D_{t-1}, según la fórmula de rendimiento.

Ecuación 6. Variación móvil

$$St = \frac{D_t - D_{t-1}}{D_{t-1}}$$

El modelo se le adapta a la funcionalidad del promedio de las variaciones para pronosticar el periodo St.

Regresión lineal móvil

Este modelo se basa en el modelo de regresión lineal, la diferencia radica en que se le pide al modelo que calcula la ventana (N) en donde la pendiente del modelo mejor se ajusta a la tendencia de la demanda.

Serie de tiempo intermitente

Es aquella serie de tiempo donde la ocurrencia de los eventos de la demanda no se presentan de manera continua o se presentan interrupciones de un período a otro.

Esta serie se presenta en situación con una amplia variedad de patrones de demanda existente, en la cual la diferenciación puede contribuir al mejor desempeño del pronóstico. Por tal consecuencia se trabajó bajo el esquema de categorización para demanda intermitente creado por Syntetos 30, donde los patrones de se clasifican en 4 categorías, de acuerdo a dos parámetros de comportamiento como lo describe la gráfica:

Los parámetros31 para clasificar son:

1. ρ = es el intervalo promedio entre demandas “ADI”, calculado así:

 Ecuación 7. Intervalo promedio entre demandas

 \[\rho = \frac{\sum_{i=1}^{N} Q_i}{N} \]

 Donde N es el número de períodos donde la demanda no es cero, y Q_i es el intervalo entre dos demandas consecutivas en el instante i.

2. \(CV^2 \) = es el coeficiente de variación cuadrático, calculado así:

Ecuación 8. Coeficiente de variación cuadrado

\[
CV^2 = \left(\frac{\sum_{i=1}^{N} (E_i - E)^2}{N} \right)^2
\]

Donde \(N \) es el número de períodos, \(E_i \) es la demanda en determinado período.

Ecuación 9. Demanda promedio

\[
E = \frac{\sum_{i=1}^{N} E_i}{N}
\]

Los cuatro patrones de demanda en los que se clasifica la demanda intermitente son:

1. Lento movimiento “Slow moving”: Los productos tiene un comportamiento de demanda con patrones que son caracterizados por infrecuencia en sus transacciones y con tamaños de demanda siempre bajos a los productos tradicionales, en los que la demanda media por periodo es pequeña, son de baja rotación.

Ilustración 7. Demanda de lento movimiento

2. Errática (Erratic): gran variabilidad en los requerimientos en cuanto a cantidad demanda.
3. Intermittent Lumpy32: Es caracterizada por varios periodos en los que la demanda es cero y cuando la demanda ocurre, presenta gran variabilidad en la cantidad demandada.

4. Intermittent clumped33: Caracterizados por una esporádica demanda, es decir varios periodos en los que la demanda es cero y no hay una marcada variabilidad en la cantidad demandada, es decir, cuando la demanda ocurre es constante o casi constante.

32 En español significa Demanda intermitente grumosa.
33 En español significa Demanda intermitente agrupada.
Ilustración 10. Demanda intermitente

Dentro de los métodos cuantitativos de pronósticos de series de tiempo intermitentes encontramos:

- Método de Croston\(^34\).
- Método de Syntetos y Boylan\(^35\). modificación al método de Croston.

Identificación y monitoreo del modelo del pronóstico de acuerdo a mediciones de los métodos cuantitativos

La determinación de un modelo adecuado de pronósticos depende de las características del historial de observaciones y del contexto en que se requieren los pronósticos. También menciona que los datos históricos disponibles deben ser analizados con detenimiento para identificar patrones obvios, como la tendencia o fluctuaciones estacionales.

Una vez elegido un modelo la función no termina aquí, ya que los pronósticos que surjan de éste deben monitorearse con regularidad para verificar que el modelo es adecuado e identificar oportunamente cambios imprevistos en la serie\(^36\).

\(^34\)VINH, Dang Quang. Forecasting irregular demand for spare parts inventory. [En línea]. Disponible en internet: http://ike.ie.pusan.ac.kr/w/images/9/9e/08fp4-1.pdf
Por este motivo las mediciones de los métodos cuantitativos enfatiza en el término exactitud en el modelo que hace referencia a la bondad de ajuste, lo que a su vez tiene que ver con qué tan bien puede reproducir los datos que ya se conocen el modelo de predicción seleccionado. En los modelos de datos de series temporales, es posible utilizar un subconjunto de los datos conocidos para pronosticar sobre el resto de información, posibilitándose el análisis de la precisión de los pronósticos más directamente. Para el usuario de los pronósticos, la exactitud más importante es la de las predicciones futuras. De conformidad con este se relacionan las medidas de exactitud para evaluar el error del pronóstico37: Desviación media absoluta (MAD), Error cuadrado medio (MSD), Error porcentual medio absoluto (MAPE), Error medio (EM).

Dada una serie temporal D_t, si D_1, D_2, D_3... son las observaciones reales para instantes anteriores a t que conforman el valor de D_t, predicción para el periodo t, e_t es el valor en el periodo t, se le llama predicción para un periodo (hacia delante) mientras que $e_t = D_t - F_t$ se denomina error de predicción sobre un periodo.

Cuando se tienen observaciones y predicciones para N periodos de tiempo, se dispondrá de n términos de error con los que se pueden definir las siguientes medidas estadísticas:

El MAD es la medición del error del pronóstico en valor absoluto, en el que se acumulan las desviaciones tanto por exceso, como por que el haber subestimado el pronóstico frente a la demanda, para lo cual se suman las desviaciones del error dentro de un valor absoluto y por últimos se obtiene un promedio de la acumulación de esas desviaciones.

\textbf{Ecuación 10. Error medio absoluto}

$$\text{MAD} = \frac{\sum_{T=1}^{N} |et|}{N}$$

El MSD es un factor de error manejado en términos cuadráticos, en el momento que el error llegue a ser positivo o negativo siempre va a tener la misma magnitud por tener un término elevado al cuadrado.

Ecuación 11. Error cuadrado medio

$$\text{MSD} = \frac{\sum_{T=1}^{N} et^2}{N}$$

El MAPE determina en términos porcentuales cuanto es la desviación frente a la demanda real, mostrando así un patrón de referencia más entendible.

Ecuación 12. Error porcentual medio absoluto

$$\text{MAPE} = \frac{\sum_{t=1}^{N} e_t/D_t}{N}$$

El error medio (EM) es el promedio de los errores del modelo de pronóstico, se calcula de la siguiente forma:

Ecuación 13. Error medio

$$\text{EM} = \frac{\sum_{T=1}^{N} et}{N}$$

Para la identificación y monitoreo del modelo de pronósticos se utiliza la señal de seguimiento38 es un indicador que permite determinar cuándo un modelo de pronóstico deja de ser confiable, este indicador busca determinar en qué momento el modelo de pronóstico está fuera de control, por lo que sería recomendable cambiar de modelo de pronóstico.

La señal de seguimiento, denotada por la letra ρ_T en el tiempo T está dada por la siguiente expresión:

Ecuación 14. Señal de seguimiento

$$\rho_T = \frac{|E_T|}{\Delta_T}$$

Donde Δ_T se calcula mediante la siguiente expresión:

Ecuación 15. Suavización del Error

\[\Delta_T = \beta|e_{T-1}| + (1 - \beta)\Delta_{T-1} \]

Donde \(\beta \) es una constante de suavizamiento, \(E_T \) es el error acumulado que se expresa de la siguiente forma:

Ecuación 16. Error acumulado en el período \(T \)

\[E_T = \sum_{i=1}^{n} e_i \]

El valor crítico con el que se compara la señal de seguimiento \(\rho_T \) se denota por \(\eta \) y se expresa de la siguiente forma:

Ecuación 17. Valor crítico

\[\eta = \frac{K}{0.8} \sqrt{\frac{1}{2\alpha}} \]

\(K \) representa el número adecuado de desviaciones estándar, que para un 95% de confianza adquiere el valor aproximado de 2, el \(\alpha \) es la constante de suavizamiento.

Por lo tanto, cuando la señal de seguimiento \(\rho_T \) es menor o igual que el valor crítico \(\eta \) \((\rho_T \leq \eta) \), se dice que la demanda en ese mes \(T \), está fuera de control, cuando se presentan dos periodos consecutivos de demanda o se presenta más del 5% de las demanda en meses fuera del valor crítico, se dice que el modelo de pronóstico implementado está fuera de control, por consiguiente la señal de seguimiento le está dando señales de alerta oportuna, para que el planeador o quien realice la función interprete después de visualizar el evento monitoreado que debe de cambiar de modelo de pronósticos, porque el modelo de pronóstico que se está utilizando no se ajusta al patrón de comportamiento de la demanda del producto seleccionado.

1.2.4 Gestión de inventarios

El inventario juega un papel importante en las empresas, por el hecho de que se convierten en un activo de gran utilidad para satisfacer la demanda que con el tiempo presentan cambios repentinados en su comportamiento, en los procesos de la cadena de suministro y la demanda efectiva.

Un inventario se define como la cantidad de bienes bajo el control de una empresa, guardados durante un tiempo para la satisfacción de una demanda
futura, este es un amortiguador entre las diferencias de tasas y tiempos entre el abastecimiento y la demanda39.

Los principales objetivos de contar con inventarios son:

- Protección contra la incertidumbre.
- Permitir la compra bajo condiciones económicas ventajosas (economía de escala en el volumen de negociación).
- Cubrir cambios anticipados en la demanda o en la oferta.

En las organizaciones la administración de los inventarios contribuye con la gestión administrativa y competitividad de la empresa así:

- Reducir la proporción de activos corrientes que están presentes en inventarios en las organizaciones y hacen parte del balance general y estado de resultados en el rubro de capital invertido.
- Al reducir el nivel de inventario se tiene una relación directamente proporcional con los costos de manejo y mantenimiento de los inventarios.
- Tiene un alto impacto en el ámbito administrativo, debido a que afecta directamente los estados financieros de la empresa e indicadores que miden la sostenibilidad y sustentabilidad de la empresa como son los indicadores de eficiencia, principalmente el retorno sobre la inversión.

Dentro de las ventajas de tener inventario se puede considerar en primer lugar satisfacer al cliente, brindando un nivel de servicio que satisfaga sus pedidos. Por otra parte se puede generar una disminución de costos de producción, transporte y compra debido a economías de escala y descuentos por cantidad, así mismo reduciendo costos de operación y finalmente sirven como medida para eventos inesperados dentro de la compañía como huelgas, demoras en el envío de materia primas y desastres naturales.

Cabe destacar que los inventarios también cuentan con desventajas significativas, como el ocultamiento de problemas de calidad y la absorción de capital sin agregar valor40.

Se encuentran clasificados en:

- **Inventarios de materia prima**: Manejan la entrada de materia prima de los proveedores que es utilizada de manera constante por la empresa.

40 VIDAL HOLGUÍN, Carlos Julio. Fundamentos de gestión de inventarios. Cali, 2010 p 4-5 Universidad del Valle – Facultad de Ingeniería.
• **Inventarios de productos semi-terminados**: Son los referentes a algunas partes del proceso en donde hay un desfasamiento en las tasas de producción, siendo las salidas de unas entradas de las otras.

• **Inventarios de productos terminados**: Manejan lo referente a cantidades de ventas y generación del producto final41.

1.2.4.1 Ambiente de demanda

En materia de inventarios la demanda es de gran importancia y se puede clasificar en 4 tipos:

- Demanda de determinística
- Demanda estocástica
- Demanda dependiente
- Demanda independiente

Demanda determinística

La demanda es conocida con certeza y se pueden comportar de dos maneras: estática o dinámica; la primera permanece constante en todos los períodos es decir se sabe cuál es la tasa demanda durante un determinado espacio de tiempo; y la demanda dinámica se conoce con certeza pero varía de periodo en periodo.

Demanda probabilística o estocástica

La demanda se comporta con aleatoriedad o variabilidad.

Demanda dependiente

La demanda de una unidad se deriva de la demanda de otra.

Demanda independiente

La demanda de un producto no relacionado con otro producto y afectada principalmente por las condiciones del mercado42.

1.2.4.2 Decisiones de tiempo

La segunda decisión más importante en los sistemas de inventario:

- Cuando ordenar?

Esta decisión tiene efecto no solo en el nivel de inventario y, por ende, en el costo del inventario, sino también en el nivel de servicio que se proporciona al cliente. Al igual que en las decisiones de cantidad, se incluyen modelos “clásicos” para ayudar a entender el comportamiento de los sistemas de inventario respecto a las decisiones de tiempo.

Se estudiarán los modelos bajo tres categorías importantes:

- Decisiones de una sola vez
- Sistemas de revisión continua, que son sinónimo de decisiones de tiempo continuo.
- Sistemas de revisión periódica, que son sinónimo de decisiones intermitentes.

Todos los modelos manejan un solo artículo, pero se pueden extender a artículos múltiples y muchos de ellos manejan demanda estocástica.

Ilustración 11. Estructura de decisiones de tiempo

Decisiones de una sola vez

Las situaciones de decisiones de una sola vez son muy comunes en los ambientes tanto de manufactura como de venta al menudeo.

Para el caso demanda determinística:

- Con frecuencia el problema se relaciona con bienes estacionales, que tienen demanda sólo durante periodos cortos.
- El valor del producto declina al final de la temporada e incluso puede ser negativo.
- Existe una sola oportunidad de ordenar.
- Se debe decidirse el número de artículos a ordenar antes del periodo de ventas, que puede ser un día, una semana o cualquier otro periodo.

Sistemas de revisión continuía

Para examinar estos sistemas, se definen dos nuevas variables de estado para el inventario:

$X_t = \text{posición del inventario en el tiempo } t$

$O_t = \text{posición de ordenes colocadas en el tiempo } t$, algunas veces llamada la “tubería del inventario”

Recuerde que I_t es el inventario disponible en el tiempo t y B_t es el nivel de faltantes (órdenes atrasadas) en el tiempo t. Entonces:

Ecuación 18. Sistema de revisión continuía

$$X_t = I_t + O_t - B_t$$

Modelo continuo (Q,R)

El modelo esencial para el sistema de revisión continua. Se presenta un enfoque gerencial\(^{43}\), en el cual se establece una política de servicio, y un enfoque de optimización, que es la revisión estocástica del EOQ determinístico. Recuerde que en el caso de revisión continua R es una variable de decisión, al contrario del caso determinístico, en el que R se obtuvo a partir de la demanda en el tiempo de entrega. Las dos variables de decisión Q y R, definen la política para este modelo. Enfoque gerencial: decisión de cantidad. Se evalúa la cantidad a ordenar usando el modelo EOQ, sustituyendo el valor esperado de la demanda aleatoria por la de la demanda conocida:

Ecuación 19. Cantidad económica de pedido

\[Q = \sqrt{\frac{2AD}{h}}. \]

Donde Q es la cantidad a ordenar, A es el costo de ordenar, \(\bar{D} \) es la demanda promedio anual, h es el costo de mantener en el inventario.

Este valor no es el valor de Q que se usa en el enfoque de optimización.

Enfoque gerencial: decisión de punto de reorden:

Ecuación 20. Punto de reorden

\[R = \bar{D}\tau + S. \]

Donde S es el inventario de seguridad que determina a R que es el punto de reorden. El inventario de seguridad maneja la variabilidad de \(\bar{D}\tau \) que es la demanda durante el tiempo de entrega, que se mide por \(\sigma_\tau \) que es la desviación estándar durante el tiempo de entrega. Por lo tanto, el inventario de seguridad se mide en “unidades de desviación estándar” y es:

Ecuación 21. Inventario de seguridad con factor de seguridad elegido de acuerdo al nivel de servicio deseado

\[S = k \cdot \sigma_\tau \]

Donde k es el factor de seguridad elegido para proporcionar el nivel de servicio deseado. Si la demanda en el tiempo de entrega tiene distribución normal, se puede conocer mejor el valor de k. Por la naturaleza de la distribución normal.

Ecuación 22. Inventario de seguridad cuando la demanda en el tiempo de entrega presenta distribución normal

\[S = z \cdot \sigma_\tau \]

Dónde z es una variable normal estándar, y mide el número de desviación estándar a partir de la media. Observe que en este caso k=z. Para el resto de este análisis, se supondrá una distribución normal para la demanda en el tiempo de entrega; así,

Ecuación 23. Punto de reorden con variable normal estándar

\[R = \bar{D}\tau + z\sigma_\tau = \bar{D}\tau + z\sigma_\tau \]
Para determinar el inventario de seguridad, es necesario conocer la política de nivel de servicio44 que quiere establecer.

Sistema de revisión periódica

Modelo (S,T)

De acuerdo al enfoque gerencial consiste en la medición efectiva del inventario en periodos establecidos y definir cantidades a pedir de acuerdo a los requerimientos del inventario objetivo. La cantidad a pedir en cada período se define por la siguiente fórmula:

\textbf{Ecuación 24.} Inventario meta de Modelo (S,T)

\[S = d (T+L) + SS - I \]
\[S = d (T+L) + Z*\sigma_{T+L} - I \]

El periodo de revisión se calcula con la siguiente fórmula:

\textbf{Ecuación 25.} Período de revisión

\[T=\sqrt{2A/h*d} \]

Dónde:
S= inventario meta
d= demanda promedio en meses, años
T: Número de días entre revisiones
L: Tiempo de entrega constante “Lead Time”
\(\sigma_{T+L}\): Desviación estándar de la demanda durante el periodo de revisión y entrega
I: Nivel de inventario actual
Política de inventario 1 = \(\alpha\) (nivel de servicio por ciclo), para calcular el Z
SS: Inventario de seguridad “stock security”= \(Z*\sigma_{T+L}\).

La siguiente gráfica muestra el comportamiento del inventario de este modelo con reabastecimiento conjunto, el cual tiene en cuenta el inventario de seguridad.

Ilustración 12. Grafica de reabastecimiento conjunto con sistema de revisión periódico.

2. EL PROBLEMA

En la IPS de cuarto nivel de complejidad donde se desarrollará este trabajo se maneja en la actualidad un modelo de planeación básico que consta de la habilidad y experticia del planeador y la ayuda del software empresarial que le sirve de soporte administrativo, el cual le permite acceder a la base de datos de los productos y extraer la demanda histórica de los productos habilitados para la atención médica a una hoja de cálculo, con el objetivo de determinar cuánto se va a demandar de un producto en un período de tiempo, para esto utiliza una hoja de cálculo que en la mayoría de los casos ejecuta un modelo de promedio simple para determinar el consumo del período siguiente.

Aunque esta institución cuenta con el software empresarial SAP, no tiene 100% parametrizado el módulo de planeación debido a la alta incertidumbre que presentan sus productos, el módulo que ofrece SAP está más enfocado a pronosticar demanda de productos de consumo masivo o productos que no tienen fecha de expiración.

Es muy alta la incertidumbre que se presenta al momento de realizar la planeación institucional de los requerimientos de medicamentos y dispositivos médicos, incertidumbre enfocada por las condiciones clínicas de los pacientes que se atienden, la fisonomía de los pacientes (alto, robusto, delgado, bajo) y la metodología de trabajo del profesional en medicina.

Los anteriores factores expuestos hacen que la institución presente en repetidas ocasiones tres situaciones: el desabastecimiento de productos lo que lleva a no prestar un adecuado nivel de servicio a los pacientes atendidos, el sobrecosto por la compra del medicamento o dispositivo médico a un distribuidor o a un tercero en la cadena de suministros y por otro lado el sobre “stock” de producto en los centros de almacenamiento o servicios farmacéuticos lo que genera pérdidas de inventarios por vencimientos u obsolescencia.
3. OBJETIVOS DEL PROYECTO

3.1 OBJETIVO GENERAL:

Proponer una metodología de planeación de inventarios y de pronóstico de demanda de medicamentos y dispositivos médicos de uso hospitalario en una IPS de cuarto nivel.

3.2 OBJETIVOS ESPECÍFICOS:

- Conocer y analizar la demanda de medicamentos y dispositivos médicos de uso hospitalario en una IPS de cuarto nivel.

- Clasificar y agrupar los medicamentos y dispositivos médicos de uso hospitalario de la IPS de cuarto nivel de acuerdo a la categorización de la demanda.

- Seleccionar y escoger alternativas de pronósticos y de modelos de inventarios para planear la demanda de medicamentos y dispositivos médicos de uso hospitalario en una IPS de cuarto nivel.

- Evaluar y comparar la propuesta expuesto frente al modelo actual utilizado en la IPS de cuarto Nivel.
4. **METODOLOGIA**

La metodología del trabajo de grado se desarrolla con una secuencia de procesos anidados que tienen valor agregado en la medida en que se va progresando en la realización de las actividades, los procesos están unidos de tal forma que la marginación de un proceso podría llevar a generar resultados diferentes a los que se consolidan con la metodología propuesta, porque la interpretación de los resultados toma fuerza en la misma contextualización de las actividades que se realizan en los procesos predecesores, por el mismo contenido conceptual que se va adquiriendo en el conocimiento e interpretación de los patrones de comportamiento de la demanda de medicamentos y dispositivos médicos que son el objeto de estudio para este trabajo de grado.

Para la realización de la propuesta de planeación de inventarios y de pronóstico de demanda de medicamentos y dispositivos médicos de uso hospitalario en una IPS de cuarto nivel se requirió el estudio y comprensión del contexto, por ende se desarrolla en 4 procesos metodológicos que son los siguientes:

1. **Analizar y conocer el comportamiento de la demanda de los medicamentos y dispositivos médicos de uso hospitalario en una IPS de cuarto nivel**, en este proceso se desarrollan las actividades que requieren la utilización de fuentes primaria en la que se involucró el uso del ERP, el cual proporcionó la recolección del registro histórico de la demanda para los productos objeto de estudio, incluyó la organización de las demandas cuantitativas en periodos, se desarrolla la actividad de integración de criterios estadísticos que permitiera la interpretación de las demandas.

2. **Clasificar y categorizar las demandas**, para la realización del proceso se requirió de información secundaria, la cual se consolida la bibliografía para hacer el estudio que permita llevar acabo el logro del objetivo específico propuesto, en este proceso se desarrolla la actividad de análisis ABC metodología empleada ampliamente como una herramienta técnica para clasificación de la demanda y además se desarrolla la actividad de categorización que se emplea para identificar cada tipo de producto, patrones de comportamiento de demanda continua e intermitente, identificados los patrones de comportamiento se categoriza la demanda de cada producto con modelos de pronósticos que se ajusten mejor a los comportamientos de las demandas de cada producto.

3. **Desarrollar un modelo consolidado de pronósticos e inventario que se ajuste a la demanda del producto de acuerdo al patrón de comportamiento del producto seleccionado**, para este proceso se requirió de información secundaria consolidada en la bibliografías que permitió el desarrollo una propuesta de un modelo sistemático que integra y consolida los criterios de medición de 14 modelos de pronóstico que se evaluán de acuerdo a los patrones de comportamiento de demanda del producto a pronosticar,
proporcionando al planeador un panorama general que permita poco margen de error en la interpretación de los errores de los modelos pronóstico, al concederle una visualización del modelo que más se ajusta al comportamiento de la demanda del producto a pronosticar y además se desarrolla la actividad de realizar un modelo de gestión de inventario dependiendo del tipo de patrón de comportamiento de la demanda continua e intermitente que garantice la disponibilidad del producto en el tiempo requerido, en la cantidad solicitada de acuerdo al nivel de servicio que el producto demande.

4. Evaluar y comparar en el mes de Octubre la propuesta expuesto frente al modelo actual utilizado en la IPS de cuarto nivel, en este proceso se requirió de información de fuente primaria, la cual se consolida la situación actual de planeación que desarrolla la IPS de cuarto nivel para evaluarse frente a la propuesta de planeación propuesta en este trabajo de grado, en esta actividad se seleccionan 9 productos, se establece la actividad de comparación en la que se identifican los errores en cantidades de productos comparadas frente a la demanda real del mes de octubre, se compara el tiempo de computo, se compara el tiempo empleado por el planeador.
5. ALCANCE Y LIMITACIONES DEL PROYECTO

5.1 ALCANCE DEL PROYECTO

Por medio de este trabajo se logrará encontrar un esquema de planeación que mejor se adecue a los patrones de la demanda que se describe con los comportamientos de la demanda por referencia de producto (SKU) ajustándose a los requerimientos y necesidades de los servicios médicos de UCIA, UCIP, UCIREN, UCIN, UTMO, DIALISIS, UACO, PARTOS y HOSPITALIZACION.

5.2 LIMITACIONES DEL PROYECTO

Es importante tener claro que los resultados alcanzados al finalizar este proyecto pueden variar con relación a las condiciones geográficas que presente cada región de acuerdo a la localización de la institución de salud, dependiendo si la institución está ubicada en una zona geográfica con subdesarrollo económico o en una región económicamente desarrollada, si en la región se presentan problemas de índole social, político, militar, si existen ausencias de infraestructuras médicas y de políticas sanitarias adecuadas para mejorar la calidad de vida de sus habitantes.

Por lo anterior, no sería conveniente y además sería un error comparar una demanda de medicamentos y dispositivos médicos en una clínica de 4 nivel de complejidad en Afganistán o Irak que son países considerados violentos a una clínica de 4 nivel en Noruega o Finlandia que son países calificados como pacíficos, o comparar las clínicas de 4 nivel en los Estados Unidos con servicio de salud costoso por su alto grado de desarrolló a una clínica de 4 nivel en Cuba con servicio de salud subsidiado por el gobierno debido al subdesarrollo socioeconómico que presenta el país, o también comparar las demandas entre instituciones de diferente nivel de complejidad, pero lo que se puede hacer y que es el objetivo de este trabajo, es generar las pasos necesarios para comprender el comportamiento de la demanda que se ajusta al entorno mediante una metodología de planeación que garantice la continuidad en la cadena de suministros.
6. CONOCER Y ANALIZAR LA DEMANDA DE MEDICAMENTOS Y DISPOSITIVOS MÉDICOS DE USO EN PACIENTES HOSPITALIZADOS EN UNA IPS DE CUARTO NIVEL.

6.1 RECOLECCIÓN DE LOS DATOS

Esta actividad se lleva a cabo con el uso del software empresarial SAP45, en el cual permite extraer la información histórica de la demanda de medicamentos y dispositivos médicos objeto de este proyecto a una hoja de cálculo de microsoft excel, esto con el objetivo de tener libertad de manipulación y poder diseñar un formato o esquema de trabajo para la hoja de cálculo.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10000000146</td>
<td>3 UN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10000000150</td>
<td>94 UN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10000000154</td>
<td>3 UN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10000000155</td>
<td>1 UN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10000000156</td>
<td>106 UN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>10000000157</td>
<td>3 UN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>10000000160</td>
<td>239 UN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>10000000165</td>
<td>2 UN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10000000168</td>
<td>116 UN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>10000000177</td>
<td>11 UN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>10000000178</td>
<td>3 UN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>10000000179</td>
<td>3 UN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>10000000180</td>
<td>14 UN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>10000000203</td>
<td>7 UN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>10000000275</td>
<td>1.966 UN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>10000000276</td>
<td>6.409 UN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>10000000279</td>
<td>383 UN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>10000000280</td>
<td>360 UN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>10000000283</td>
<td>108 UN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 1. Recolección de datos

Fuente: Los autores

6.2 ORGANIZAR LOS DATOS

Luego de recoger los 1.599 productos en una hoja de cálculo, la información proporcionada se debe organizar, para esto se crea un formato que permita identificar con facilidad el código de cada producto, el nombre de cada producto, la presentación de cada producto y el consumo mensual y diario de cada producto, identificar de los 1.599 productos totales, cuántos son medicamentos y cuántos son dispositivos médicos, identificar los productos con series de tiempo continuas e intermitentes.

45 Es un software ERP, el cual es un planeador de recursos empresariales al que se accede al módulo MM que es el módulo de inventarios.
TABLA 2. Organización de datos

Fuente: Los autores

6.3 ANALIZAR EL COMPORTAMIENTO DE LOS DATOS

Para el análisis se toma tres productos, se hace uso del organizador de datos que se crea, desde este se ejecuta la opción de filtrar los dispositivos médicos para seleccionar uno de ellos al azar, quedando elegido el Equipo macrogoteo, luego se filtra los medicamentos para seleccionar uno de ellos al azar, quedando elegido el Meronem vial x 1 gr y el tercer producto a elegir se escoge, haciendo uso del organizador nuevamente en este se ejecuta la opción de filtrar los medicamentos con serie de tiempo intermitente para seleccionar uno al azar, quedando elegido el Bladuril tab x 50 mгр.

Luego de la selección de los tres productos se llevan los datos de la demanda de los tres productos a una hoja de cálculo en excel en la cual se crea un formato detallado y formulado, que calcule el comportamiento de la demanda por cada producto durante los meses de Enero 2012 hasta Agosto del 2013 con mediciones estadísticas descriptivas que permite identificar características en el comportamiento de la demanda del producto, en los que se describe que tendencia central o que tan centradas están las demandas y que tan dispersas están las demandas a la media de las demandas, para esto se muestra el gráfico de la hoja de cálculo para describir el comportamiento de los tres productos seleccionados.
Tabla 3. Análisis descriptivo de demanda.

Fuente: Los autores

El análisis descriptivo del dispositivo médico Equipo macrogoteo presenta los siguientes resultados, como medida de tendencia central la media de las demandas es de 2123 unidades con una desviación estándar de 438 unidades y un coeficiente de variación de 0,0425 esto quiere decir que las demandas son homogéneas, es una serie de tiempo continua sin tendencia, es decir, constante, la demanda mínima es de 1578 unidades y la demanda máxima de 2783 unidades durante la serie de tiempo.

El análisis descriptivo del medicamento Meronem vial x 1 gr presenta los siguientes resultados, como medida de tendencia central la media de las demandas es de 2043 viales con una desviación estándar de 363 viales y un coeficiente de variación de 0,1777 esto quiere decir que las demandas son homogéneas, es una...
serie de tiempo continua sin tendencia, es decir, constante, la demanda mínima es de 1513 viales y la demanda máxima de 3064 viales durante la serie de tiempo.

El análisis descriptivo del medicamento Bladuril Tab x 50 Mgr presenta los siguientes resultados, como medida de tendencia central la media de la demanda es de 9 Tabletas con una desviación estándar de 7 Tabletas y un coeficiente de variación de 0,8045 esto quiere decir que las demandas son heterogéneas, es una serie de tiempo intermitente, la demanda mínima es de 2 Tabletas y la demanda máxima de 24 Tabletas durante la serie de tiempo.
7. CLASIFICAR Y AGRUPAR LOS MEDICAMENTOS Y DISPOSITIVOS MEDICOS DE USO HOSPITALARIO DE LA IPS DE CUARTO NIVEL DE ACUERDO A LA CATEGORIZACIÓN DE LA DEMANDA.

7.1 CLASIFICACIÓN DE LOS PRODUCTOS

Después de haber estudiado y analizado el comportamiento de la demanda de los 1.599 productos surge la necesidad de manejar una metodología que permita realizar una administración de la demanda, por medio de la cual se desarrolle un criterio de clasificación en el cual se priorice las necesidades de control del inventario sobre aquellos productos que describen una característica particulares que garantice el flujo continuo de la cadena de suministro de los medicamentos y dispositivos médicos, que contribuya a la sostenibilidad de la clínica por medio de la disponibilidad oportuna de los productos y cumpla con los objetivos del negocio que es la sustentabilidad financieramente que se logra haciendo uso adecuado del dinero invertido en inventario.

La clasificación de productos se divide en niveles de la siguiente manera:

1) Nivel I: Clasificación por tipo de producto
2) Nivel II: Clasificación ABC por rotación
3) Nivel III: Clasificación ABC por Importancia
4) Nivel IV: Clasificación ABC consolidada

7.1.1 Clasificación tipo de producto

A continuación se hace un listado de todos los tipos de productos que tiene la institución de salud de cuarto nivel de complejidad:

1) Dispositivos médicos
2) Medicamentos
3) Insumos de laboratorio
4) Material de osteosíntesis
5) Material médico-quirúrgico

Se define desde el capítulo del alcance del proyecto que los tipos de productos materia de este trabajo de grado son los dispositivos médicos y los medicamentos, Para esto se desarrolla la siguiente secuencia de pasos:

a) Se usa una hoja de cálculo de excel partiendo de la plantilla que se diseñó para organizar los datos.

b) Se conoce que la clínica tiene unificado los tipos de productos por código, el cual identifica los dispositivos médicos con el prefijo 1 y los medicamentos con el prefijo 2.
c) Se puede identificar de los 1.599 productos cuantos son dispositivos médicos y cuantos son medicamentos.

d) En la hoja de cálculo se aplica una función anidada que identifique el prefijo del código si empieza por 1 o por 2, la cual devuelva el nombre del producto, ya sea medicamento o dispositivo médico.

e) Se determinó el nombre del producto, se ejecuta la función de excel “contar si” para que recuenten cuantos son medicamento y dispositivos médicos, tal como está en la siguiente grafica de la hoja de cálculo.

<table>
<thead>
<tr>
<th>Código</th>
<th>Description</th>
<th>Pres.</th>
<th>Consum. Prom.</th>
<th>Clasificación x tipo de producto</th>
</tr>
</thead>
<tbody>
<tr>
<td>100000053</td>
<td>GUANTE PARA EXAMEN PEQ UN MED REF.8856</td>
<td>UN</td>
<td>279.663</td>
<td>Dispositivo Médico</td>
</tr>
<tr>
<td>100000025</td>
<td>GASA PREC ESTERIL VERSALON 3X3X400</td>
<td>UN</td>
<td>33.140</td>
<td>Dispositivo Médico</td>
</tr>
<tr>
<td>100000027</td>
<td>JERINGA DESEC S/AGUA 10 ML REF.302561</td>
<td>UN</td>
<td>25.129</td>
<td>Dispositivo Médico</td>
</tr>
<tr>
<td>100000029</td>
<td>JERINGA DESEC S/AGUA 5ML REF.502553</td>
<td>UN</td>
<td>18.310</td>
<td>Dispositivo Médico</td>
</tr>
<tr>
<td>100000054</td>
<td>JERINGA DESC.3CC C.LGUER LOCK-BD 302489</td>
<td>UN</td>
<td>16.482</td>
<td>Dispositivo Médico</td>
</tr>
<tr>
<td>100000057</td>
<td>AGUA HIPD.DESCHRABLE 18GX1.2</td>
<td>UN</td>
<td>16.175</td>
<td>Dispositivo Médico</td>
</tr>
<tr>
<td>100000058</td>
<td>AGUA HIPD.DESCHRABLE 21GX1.2</td>
<td>UN</td>
<td>15.664</td>
<td>Dispositivo Médico</td>
</tr>
<tr>
<td>100000059</td>
<td>CLEXANE 60MG/0.6ML</td>
<td>JG</td>
<td>392</td>
<td>Medicamento</td>
</tr>
<tr>
<td>100000060</td>
<td>FUROSEMIDA 40 MG</td>
<td>TAB</td>
<td>367</td>
<td>Medicamento</td>
</tr>
<tr>
<td>100000061</td>
<td>DEXTROSA 5% SOLUCION SALINA 9% 500ML</td>
<td>BOL</td>
<td>386</td>
<td>Medicamento</td>
</tr>
<tr>
<td>100000062</td>
<td>ADALAT OROS 30 MG</td>
<td>TAB</td>
<td>377</td>
<td>Medicamento</td>
</tr>
<tr>
<td>100000063</td>
<td>BUMINATE (FLEXBUMIN) 20 G/50 ML</td>
<td>FCO</td>
<td>368</td>
<td>Medicamento</td>
</tr>
<tr>
<td>100000064</td>
<td>COROTROPE 1MG/ML</td>
<td>AMP</td>
<td>360</td>
<td>Medicamento</td>
</tr>
<tr>
<td>100000065</td>
<td>MORFINASOL INT 10MG/ML</td>
<td>AMP</td>
<td>358</td>
<td>Medicamento</td>
</tr>
<tr>
<td>100000066</td>
<td>FORMULAS-26 GOLD LIQUIDA 100 ML</td>
<td>FCO</td>
<td>358</td>
<td>Medicamento</td>
</tr>
<tr>
<td>100000067</td>
<td>LOVASTATINA - GENFAR 20 MG</td>
<td>TAB</td>
<td>356</td>
<td>Medicamento</td>
</tr>
<tr>
<td>100000068</td>
<td>DEXTROSA 5% - 50ML</td>
<td>BOL</td>
<td>346</td>
<td>Medicamento</td>
</tr>
<tr>
<td>100000069</td>
<td>URSEOFALK 250 MG</td>
<td>CP</td>
<td>341</td>
<td>Medicamento</td>
</tr>
<tr>
<td>100000070</td>
<td>HIGOSINA 20MG/ML</td>
<td>AMP</td>
<td>328</td>
<td>Medicamento</td>
</tr>
<tr>
<td>100000071</td>
<td>NUTREN 1.0 SIN FIBRA VAINILLA 250 ML</td>
<td>LA</td>
<td>322</td>
<td>Medicamento</td>
</tr>
<tr>
<td>100000072</td>
<td>IMODIUM 2 MG</td>
<td>CP</td>
<td>318</td>
<td>Medicamento</td>
</tr>
<tr>
<td>100000073</td>
<td>TRITICO 50 MG</td>
<td>TAB</td>
<td>311</td>
<td>Medicamento</td>
</tr>
<tr>
<td>100000074</td>
<td>FORM. PREMATUROS-26 GOLD LIQ 100 ML</td>
<td>FCO</td>
<td>309</td>
<td>Medicamento</td>
</tr>
<tr>
<td>100000075</td>
<td>CLINDAMICINA 600MG/4ML</td>
<td>AMP</td>
<td>307</td>
<td>Medicamento</td>
</tr>
<tr>
<td>100000076</td>
<td>GLUCONATO DE CALCIO 10% - 10ML</td>
<td>AMP</td>
<td>306</td>
<td>Medicamento</td>
</tr>
</tbody>
</table>

| Tabla 4. Clasificación por tipo de producto |

Fuente: Los autores

Como se puede observar de la hoja de cálculo de los 1.599 productos se identifica que 665 productos son dispositivos médicos y que 934 productos son medicamentos.

7.1.2 Metodología de análisis ABC por alta rotación

El criterio de alta rotación por demanda mensual: se selecciona por las características en el comportamiento de la demanda de alto volumen y de movimiento continuo. Este parámetro tiene un impacto inmediato en los objetivos de sostenibilidad de la clínica porque la priorización de este permite al administrador de la demanda saber dónde exactamente direccionar sus esfuerzos para controlar el flujo continuo del suministro, que finalmente es la disponibilidad
del producto en un tiempo requerido, tener la oportunidad de visualizar y chequear los productos de forma resumida, asociado a un grupo de productos que tienen unos comportamientos similares y se le puede dar el mismo tratamiento.

Para esta metodología se partió de la plantilla de hoja de cálculo de excel organizada en la cual:

a) Se ordena la columna del promedio mensual de demanda de mayor a menor demanda.

b) Se totaliza la columna de demanda promedio mensual:

Valor mensual = volumen demanda mensual x costo unitario de cada producto.

c) Se pondera la demanda de cada producto con relación a la totalidad de las demandas mensuales.

d) Se acumula los porcentajes ponderados de cada producto para hallar el porcentaje acumulado.

Se clasificarán como clase A aquellos productos más demandados durante un mes, los menos demandados serán clasificados como C y los productos restantes como B.

Después de analizar y clasificar las demandas mensuales de los 1.599 productos se observa que se presentaban unos grupos de productos que tenían ciertas características, aisladas de la metodología de Análisis ABC propuesta por Pareto, que a criterio de los autores valía la pena diferenciarlas de la clasificación ABC, por eso se toma la decisión de proponer incorporar un tipo de clase adicional que se llamará clasificación tipo D46.

Se clasificarán como tipo D1 aquellos ítems nuevos que se incluirán en el vademécum institucional47 de salud y tendrán una duración en esta clasificación hasta que cumplan 6 meses de historia, a partir del séptimo mes se revisara su comportamiento mensual de demanda y entrará a formar parte de la clasificación ABC:

Forman parte de esta clasificación tipo D2 aquellos productos que solo han tenido rotación 1 o 2 veces durante los últimos 21 meses48, el cual se evaluará con el Comité de farmacia49 su continuidad en el vademécum institucional.

46 Cita de los Autores.
47 Registro virtual de los productos autorizados por el comité de Farmacia y Tecnovigilancia para su uso en la institución.
48 Son los meses con los que se cuentan para el análisis de la serie de tiempo debido a la implementación de SAP en Enero de 2011.
Se incluye dentro de la clasificación tipo D, el grupo de medicamentos vitales no disponibles clasificado como tipo D³ son medicamentos indispensables e irremplazables para salvaguardar la vida o aliviar el sufrimiento de un paciente o un grupo de pacientes y que por condiciones de baja rentabilidad en su comercialización, no se encuentra disponible en el país o las cantidades no son suficientes.

Criterios para determinar que un medicamento es vital no disponible

Para determinar la condición de un medicamento vital no disponible, este deberá ajustarse a los siguientes criterios:

a) Que no se encuentre en fase de investigación clínica;
b) Que no se encuentre comercializado en el país o habiéndose comercializado las cantidades no sean suficientes para atender las necesidades;
c) Que no cuente con sustitutos en el mercado.

La autorización de importación de los medicamentos vitales no disponibles se concede por una sola vez y podrá ser solamente solicitada según prescripción médica.

Exención del registro sanitario.

Los medicamentos definidos por la Comisión Revisora del Invima como "vitales no disponibles", no requerirán registro sanitario para su producción, importación y/o comercialización. No obstante deberán cumplir con los criterios para determinar que un medicamento es vital no disponible.

⁴⁹ El comité de farmacia en un grupo interdisciplinario conformado por personal médico, asistencial y administrativo de la IPS
⁵⁰ Decreto 481 del 2004, República de Colombia
Tabla 5. Clasificación ABC de medicamentos y dispositivos médicos por rotación.

Fuente: Los autores

De la gráfica se puede observar que de los 665 dispositivos médicos clase A son 7 productos, clase B son 43 productos, clase C son 450 productos y clase tipo D son 165 productos, de los cuales 24 son productos nuevos y 141 son productos que van a ser evaluados por el comité de farmacia.

De los 934 medicamentos que se seleccionaron son clase A 33 productos, clase B son 67 productos, clase C son 655 productos y clase D son 179 productos de los cuales 34 son productos nuevos D¹, 142 son productos a evaluar por el comité de farmacia D³ y 3 productos catalogados como vitales no disponibles D³, además se observa el consolidado por clases de los 1.599 productos, en los que clase totales son 40 productos, clase B son 110 productos, clase C son 1105 productos y clase tipo D son 344 productos, de los cuales 58 son productos nuevos, 283 son productos que van a ser evaluados por el comité de farmacia y 3 productos catalogados como vitales no disponibles.

7.1.2.1 Análisis Pareto

A partir de los resultados de la gráfica de hoja de cálculo en la que se clasificó por rotación los 1.599 productos, se desarrolla un formato donde se relaciona la clasificación ABC con los parámetros de consumo promedio mensual, ponderado por clase y frecuencia acumulada, con el objetivo de revisar el porcentaje de participación de los tipos de clase en los 1.599 productos objeto de análisis.

Por consiguiente se presenta la gráfica de la hoja de cálculo.
Los resultados encontrados son los siguientes:

a) Los productos clasificados tipo A son 40, el cual representan el 2,5% del total de los productos, el porcentaje de participación es el 46,8% del consumo promedio mensual.

b) Los productos clasificados tipo B son 110, el cual representan el 6,9% del total de los productos, el porcentaje de participación es el 23,9% del consumo promedio mensual.

c) Los productos clasificados tipo C son 1105, el cual representan el 69,1% del total de los productos, el porcentaje de participación es el 14,8% del consumo promedio mensual.

d) Los productos clasificados tipo D son 344, el cual representan el 21,5% del total de los productos, el porcentaje de participación es el 14,5% del consumo promedio mensual.

7.1.3 Metodología clasificación por importancia relevante

Debido a tres factores trascendentales como lo son:

a) Ética médica profesional.
b) Misión de la IPS.
c) Regulaciones y leyes.

Se hace necesario clasificar un grupo de productos entre los que se encuentran:

1. Medicamentos de control especial.
2. Catéteres y cánulas de intubación.
3. Medicamentos urgentes.
4. Antibióticos.

La falta de uno o varios de estos productos en el momento de la atención disminuye la probabilidad que el paciente continúe con vida y estaremos en contravía de uno o todos los factores anteriormente mencionados.

Los productos que se encuentren en estos grupos se clasificarán como tipo A y entran a formar parte de la clasificación ABC por rotación.

Dada la importancia de algunos productos en la actividad del negocio de las IPS de 4 nivel de complejidad se hace necesario estudiar por separado esta clase de productos, se incluyen en esta clasificación aquellos productos que cumplan las siguientes condiciones:

1) La utilización del ítem es considerada como de urgencia vital
2) El tiempo entre la solicitud y la dispensación debe ser muy corto
3) No existe producto complementario.
4) El agotado de este producto implica la no realización de un procedimiento.
5) Medicamentos de control especial (narcóticos).

Como ejemplo se cita el siguiente producto:

Esmeron Amp x 10 mg: medicamento indicado como adyuvante de la anestesia general para facilitar la intubación traqueal durante la inducción de rutina y de secuencia rápida, y para proporcionar relajación muscular esquelética durante la cirugía. Esmeron también está indicado como adyuvante en la unidad de cuidados intensivos (UCI) para facilitar la intubación y la ventilación mecánica.

En la siguiente grafica de hoja de cálculo se presenta un formato donde se relacionan los códigos de los productos, descripción del producto, presentación del producto, grupo al que pertenece, clasificación por tipo de producto, se le asigna la clasificación por importancia:

51 Entiéndase como tiempo corto un tiempo máximo de 10 minutos en casos de atención de solicitudes de urgentes
52 www.farmaciasahumada.cl/fasaonline/fasa/MFT/PRODUCTO/P1183.HTM
Tabla 7. Clasificación ABC por importancia.

Fuente: Los autores

a) En la gráfica se observa la asignación de los productos cumpliendo las condiciones anteriormente descritas.

b) Se observa que la clasificación por importancia incluye un total de 132 productos.

c) 33 son dispositivos médicos y 99 son medicamentos.

d) En la clasificación grupal se presentan 51 medicamentos de control especial, 33 catéteres y cánulas de intubación, 32 medicamentos urgentes y 16 antibióticos.

7.1.4 Clasificación ABC consolidada

Para realizar esta consolidación se desarrolla lo siguiente:

a) Se partió de la clasificación por rotación y la clasificación por importancia relevante.

b) Se define una sola clasificación consolidada.

c) Para la clasificación por importancia relevante se llegó a un total de 132 productos que se asignan como clase A y tienen una prioridad más fuerte.
que redefine los productos de la clasificación por rotación que se encuentran clasificados como B, C o D.

De la gráfica se observa que de los 665 dispositivos médicos clase A son 40 productos, clase B son 39 productos, clase C son 422 productos y clase tipo D son 164 productos, de los cuales 23 son productos nuevos y 141 son productos que van a ser evaluados por el comité de farmacia para su continuidad.

De los 934 medicamentos que se seleccionaron son clase A 125 productos, clase B son 55 productos, clase C son 588 productos y clase D son 166 productos de los cuales 29 son productos nuevos D^1, 134 son productos a evaluar por el comité de farmacia D^2 y 3 productos catalogados como vitales no disponibles D^3.

También se observa el consolidado por clases de los 1.599 productos, en los que la clase A son 165 productos, clase B son 94 productos, clase C son 1010 productos y clase tipo D son 330 productos, de los cuales 53 son productos nuevos D^1, 275 son productos que van a ser evaluados por el comité de farmacia D^2 y 3 productos catalogados como vitales no disponibles D^3.

<table>
<thead>
<tr>
<th>Código</th>
<th>Description</th>
<th>A</th>
<th>D promedio mensual</th>
<th>% Individual</th>
<th>% Acumulado</th>
<th>Clasif. tipo de producto</th>
<th>Clasif. Rotación</th>
<th>Dispositivo Médico</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000000454</td>
<td>MEROPENEM 1G</td>
<td>AME</td>
<td>191.743.327</td>
<td>9.0%</td>
<td>9.6%</td>
<td>Medicamento</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>2000000051</td>
<td>SET-PADION BOMBA INFUSION CLAVE</td>
<td>UN</td>
<td>60.019.846</td>
<td>2.9%</td>
<td>12.4%</td>
<td>Dispositivo Médico</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>2000000052</td>
<td>SET-PADION BOMBA INFUSION</td>
<td>LN</td>
<td>54.397.875</td>
<td>2.7%</td>
<td>15.2%</td>
<td>Dispositivo Médico</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>2000000042</td>
<td>NOVOPEN-4 RT 2 MG</td>
<td>VI</td>
<td>48.308.789</td>
<td>2.4%</td>
<td>17.6%</td>
<td>Medicamento</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>2000000063</td>
<td>KIOVIS 50/80 ML</td>
<td>VI</td>
<td>45.112.698</td>
<td>2.3%</td>
<td>19.8%</td>
<td>Medicamento</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>2000000051</td>
<td>AMBIOSIDE 60 MG</td>
<td>VI</td>
<td>42.083.333</td>
<td>2.1%</td>
<td>22.0%</td>
<td>Medicamento</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>2000000051</td>
<td>CANCERIS 50 MG/90 ML</td>
<td>AMB</td>
<td>36.193.530</td>
<td>1.6%</td>
<td>19.2%</td>
<td>Medicamento</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>2000000051</td>
<td>SOLUCION SALINA NORMAL 0.95 % - 100 ML</td>
<td>VI</td>
<td>22.969.061</td>
<td>1.7%</td>
<td>21.2%</td>
<td>Medicamento</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>2000000051</td>
<td>TAZOCIN 4.5 G</td>
<td>VI</td>
<td>31.833.450</td>
<td>1.5%</td>
<td>27.4%</td>
<td>Medicamento</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 8. Clasificación ABC consolidado.

Fuente: Los autores
7.1.4.1 Análisis de Pareto consolidado

A partir de los resultados de la gráfica de hoja de cálculo clasificación ABC consolidada en la que se clasificó los 1.599 productos, se desarrolla un formato donde se relaciona la clasificación ABC con los parámetros de consumo promedio mensual, ponderado por clase y frecuencia acumulada, con el objetivo de revisar el porcentaje de participación de los tipos de clase en los 1.599 productos objeto de análisis.

Por consiguiente se presenta la gráfica de la hoja de cálculo.

<table>
<thead>
<tr>
<th>Dispositivos y medicamentos</th>
<th>ponderado por producto</th>
<th>Consumo promedio mensual</th>
<th>ponderado por clase</th>
<th>Frecuencia acumulada</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>165</td>
<td>$1.081.039.918.07</td>
<td>54,4%</td>
<td>54,4%</td>
</tr>
<tr>
<td>B</td>
<td>34</td>
<td>$400.061.458.42</td>
<td>20,2%</td>
<td>74,6%</td>
</tr>
<tr>
<td>C</td>
<td>1010</td>
<td>$262.451.129.16</td>
<td>13,2%</td>
<td>87,8%</td>
</tr>
<tr>
<td>D</td>
<td>330</td>
<td>$241.987.183.49</td>
<td>12,2%</td>
<td>100,0%</td>
</tr>
</tbody>
</table>

Tabla 9. Análisis de Pareto consolidado 1599 productos.

Fuente: Los autores

Los resultados encontrados son los siguientes:

a) Los productos clasificados tipo A son 165, el cual representan el 10,3% del total de los productos, el porcentaje de participación es el 54,4% del consumo promedio mensual.

b) Los productos clasificados tipo B son 94, el cual representan el 5,9% del total de los productos, el porcentaje de participación es el 20,2% del consumo promedio mensual.

c) Los productos clasificados tipo C son 1.010, el cual representan el 63,2% del total de los productos, el porcentaje de participación es el 13,2% del consumo promedio mensual.

d) Los productos clasificados tipo D son 330, el cual representan el 20,6% del total de los productos, el porcentaje de participación es el 12,2% del consumo promedio mensual.
e) De la tabla 6, se trae la acotación que en la clasificación por rotación se observa que 344 productos son clasificados tipo D y en la tabla 9, como se describe en los resultados anteriores solo se encontraron 330 productos, esto quiere decir, que un total de 14 productos de los 132 productos clasificados por importantes relevante fueron reclasificados de clase D por rotación a clase A por consolidación que se realizó al unificar los productos clasificados por rotación de demanda e importancia relevante, los 14 productos se relacionan en la siguiente tabla 10.

<table>
<thead>
<tr>
<th>N° de productos</th>
<th>Código</th>
<th>Descripción</th>
<th>Clase tipo D</th>
<th>Clasificados tipo A por importancia relevante</th>
<th>Criterio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2000000384</td>
<td>IMMUNATE</td>
<td>D°</td>
<td>Importantes</td>
<td>urgente</td>
</tr>
<tr>
<td>2</td>
<td>2000000356</td>
<td>HEMOFIL M FACTOR VIII UI</td>
<td>D°</td>
<td>Importantes</td>
<td>urgente</td>
</tr>
<tr>
<td>3</td>
<td>2000001474</td>
<td>NOVOSEVEN RT 1 MG</td>
<td>D°</td>
<td>Importantes</td>
<td>urgente</td>
</tr>
<tr>
<td>4</td>
<td>2000006846</td>
<td>NITROPRUSIATO SODIO (ECAR) 50MG/2ML</td>
<td>D°</td>
<td>Importantes</td>
<td>urgente</td>
</tr>
<tr>
<td>5</td>
<td>2000001600</td>
<td>VASCEL (VASOPRESINA) SOL. INY. 20UI/ML</td>
<td>D°</td>
<td>Importantes</td>
<td>urgente</td>
</tr>
<tr>
<td>6</td>
<td>2000000550</td>
<td>NOVOSEVEN 120 UI</td>
<td>D°</td>
<td>Importantes</td>
<td>urgente</td>
</tr>
<tr>
<td>7</td>
<td>2000001653</td>
<td>FENTANIL 50MCG/ML AMP x 10 ML</td>
<td>D°</td>
<td>Importantes</td>
<td>control</td>
</tr>
<tr>
<td>8</td>
<td>2000001679</td>
<td>PETRESSIN 20UI/ML SOL INY</td>
<td>D°</td>
<td>Importantes</td>
<td>urgente</td>
</tr>
<tr>
<td>9</td>
<td>1000007891</td>
<td>CATETER LIFECATH 3FR 20GX60 R.129413</td>
<td>D°</td>
<td>Importantes</td>
<td>catéter</td>
</tr>
<tr>
<td>10</td>
<td>2000001607</td>
<td>CYTIL V 200 MCG - TAB</td>
<td>D°</td>
<td>Importantes</td>
<td>control</td>
</tr>
<tr>
<td>11</td>
<td>2000001608</td>
<td>CYTIL V 50 MCG - TAB</td>
<td>D°</td>
<td>Importantes</td>
<td>control</td>
</tr>
<tr>
<td>12</td>
<td>2000000514</td>
<td>MORFINA 30MG/20ML</td>
<td>D°</td>
<td>Importantes</td>
<td>control</td>
</tr>
<tr>
<td>13</td>
<td>2000001652</td>
<td>TIOPENTAL SÓDICO 1 GR (LAFRANCOL)</td>
<td>D°</td>
<td>Importantes</td>
<td>control</td>
</tr>
<tr>
<td>14</td>
<td>2000001614</td>
<td>FENTANIL 0.1 MG / 2 ML - AMP</td>
<td>D°</td>
<td>Importantes</td>
<td>control</td>
</tr>
</tbody>
</table>

Tabla 10. Productos tipo D que se reclasificaron a clase A por importancia relevante.

Fuente: Los autores

En la tabla 10 se observa que se encuentran 7 productos que se reclasificaron tipo A, por el criterio de productos urgentes 6 productos que se reclasificaron tipo A por el criterio de ser producto de control especial, 1 producto que se reclasificó tipo A por el criterio de ser un catéter

7.1.5 Panorama general clasificación ABC

Se consolidó la información en una hoja de cálculo de excel donde se relacionan los niveles de clasificación expresados en el numeral 6.2.1.
Tabla 11. Panorama general de la clasificación ABC para los 1.599 productos entre medicamentos y dispositivos médicos.

Fuente: Los autores

Como resultado del análisis de los 1.599 productos se encontró que 165 productos se clasificaron como tipo A, 94 productos fueron clasificados como tipo B, 1010 productos fueron clasificados como tipo C y 330 productos fueron clasificados como tipo D.

7.2 CATEGORIZACIÓN DE LA DEMANDA

Categorizar la demanda consiste en agrupar productos cuyos patrones de demanda presentan características similares. A pesar de la importancia de la categorización en la gestión del inventario no existe una categorización y definición de patrones de demanda generalizada.53

La categorización de los 1.599 productos se divide en niveles de la siguiente manera:

1) Nivel I: Categorización por tipo de demanda.
2) Nivel II: Categorización por coeficiente de variación.
3) Nivel III: Categorización por tendencia.
4) Nivel IV: Categorización por intervalo medio de ocurrencia.

53 BABILONI. María E. (2009), Tesis Doctoral, Una metodología para la estimación eficiente del "stock" de referencia en políticas de revisión periódica con demanda discreta, pág. 12.
Categoría 1 consiste en agrupar los productos según la ocurrencia de los eventos de la demanda:

1) Demanda Continua
2) Demanda Intermitente

Categoría 2 consiste en agrupar los productos según la variabilidad de los datos de la demanda:

1) Coeficiente de variación (δ) para los ítems que presentan demanda continua.
2) Coeficiente de variación cuadrática (δ^2) para los ítems que presentan demanda intermitente

Categoría 3 consiste en agrupar los productos según su tendencia y su coeficiente de variación, esta categoría solo aplica para los ítems que presentaron demanda continua, se representa por la variable (m)

Categoría 4 basado en el esquema de categorización para demanda intermitente de Syntetos54, consiste en agrupar los productos según el intervalo promedio entre demandas, en cual se identifica con la variable (ρ) y el coeficiente de variación cuadrático, el cual se idéntica con la variable (δ^2)

7.2.1 Nivel I: Categorización por tipo de demanda

7.2.1.1 Demanda continua

Es aquella demanda donde la ocurrencia de sus eventos se presentan de manera continua período a período sin interrupciones.

Para identificar la demanda continua, se requiere identificar en la hoja de cálculo ordenada anteriormente, cuantos productos de los 1.599 presentan demanda continua para tal fin se muestra la tabla 12.

Para el desarrollo de la tabla 12 se ejecutan los siguientes pasos:

a) Se agrupa los 1.599 productos y se hizo un filtro en la hoja de cálculo excel que devolviera los productos con demanda ininterrumpida durante mínimo 7 meses continuos últimos meses de los 21 meses que son objeto de análisis.

b) Se clasifica los códigos por tipo producto: dispositivos médicos o medicamentos.

c) Se ejecuta la función de excel “contar.si.conjunto” para que recuerde cuantos de los 1.599 productos presentan demanda constante y además para que devuelva en el conteo cuantos son medicamentos y dispositivos médicos.

En la tabla se puede observar los resultados del desarrollo, la cual refleja que 550 productos presentan demanda continua, de los cuales 247 son dispositivos médicos y 303 son medicamentos.

7.2.1.2 Demanda intermitente

Es aquella demanda donde la ocurrencia de sus eventos no se presenta de manera continua o presenta interrupciones de un período a otro.
Para identificar la demanda intermitente, se requiere identificar en la hoja de cálculo ordenada anteriormente, cuantos productos de los 1.599 presentan demanda intermitente para tal fin se muestra la tabla.

<table>
<thead>
<tr>
<th>Código</th>
<th>Descripción</th>
<th>Un.</th>
<th>Mayo</th>
<th>Hora</th>
<th>Intenciones</th>
<th>Clasificación</th>
<th>Cantidad</th>
<th>Intenciones</th>
<th>Clasificación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SODA DE SUCCION #1 REF.1134</td>
<td>UN</td>
<td>12</td>
<td>3</td>
<td>1</td>
<td>Intermitente</td>
<td>3</td>
<td>Dispositivo</td>
<td>Medicamento</td>
</tr>
<tr>
<td>2</td>
<td>LEPONEX 25 MG</td>
<td>TAB</td>
<td>16</td>
<td>5</td>
<td>1</td>
<td>Medicamento</td>
<td>4</td>
<td>Intermitente</td>
<td>Medicamento</td>
</tr>
<tr>
<td>3</td>
<td>TRAMAL 50 MG</td>
<td>CP</td>
<td>112</td>
<td>3</td>
<td>9</td>
<td>Medicamento</td>
<td>2</td>
<td>Intermitente</td>
<td>Medicamento</td>
</tr>
<tr>
<td>4</td>
<td>DIPNAV 100G/20ML</td>
<td>ANP</td>
<td>38</td>
<td>0.4</td>
<td>1</td>
<td>Medicamento</td>
<td>2</td>
<td>Intermitente</td>
<td>Medicamento</td>
</tr>
<tr>
<td>5</td>
<td>ENDOBRAVETAL 4IBG/3ML</td>
<td>ANP</td>
<td>16</td>
<td>111</td>
<td>13</td>
<td>Medicamento</td>
<td>5</td>
<td>Intermitente</td>
<td>Medicamento</td>
</tr>
<tr>
<td>6</td>
<td>AGUA RPDE DE RCI/CABLE 18. 1 2FNO3211</td>
<td>UN</td>
<td>793</td>
<td></td>
<td></td>
<td>Dispositivo</td>
<td>2</td>
<td>Intermitente</td>
<td>Medicamento</td>
</tr>
<tr>
<td>7</td>
<td>CATIGAT CROMADO 2.2 CTI REF.927</td>
<td>UN</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>Dispositivo</td>
<td>2</td>
<td>Intermitente</td>
<td>Medicamento</td>
</tr>
<tr>
<td>8</td>
<td>PIZOZTA TABLETAS 800 MG</td>
<td>TAB</td>
<td>15</td>
<td>9</td>
<td>10</td>
<td>Medicamento</td>
<td>5</td>
<td>Intermitente</td>
<td>Medicamento</td>
</tr>
<tr>
<td>9</td>
<td>PMRREOFAT 8D+171 MG</td>
<td>TAB</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>Medicamento</td>
<td>2</td>
<td>Intermitente</td>
<td>Medicamento</td>
</tr>
<tr>
<td>10</td>
<td>BUSCAPIN COMPOSIT 19+236 MG</td>
<td>TAB</td>
<td>4</td>
<td>8</td>
<td>2</td>
<td>Medicamento</td>
<td>2</td>
<td>Intermitente</td>
<td>Medicamento</td>
</tr>
<tr>
<td>11</td>
<td>JERINGA DES NOS C/USU LOQ.302493</td>
<td>UN</td>
<td>2</td>
<td>22</td>
<td>1,603</td>
<td>Dispositivo</td>
<td>1</td>
<td>Intermitente</td>
<td>Medicamento</td>
</tr>
<tr>
<td>12</td>
<td>SODA FOLY 93 UASAB SILICONA C41593</td>
<td>UN</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>Dispositivo</td>
<td>3</td>
<td>Intermitente</td>
<td>Medicamento</td>
</tr>
<tr>
<td>13</td>
<td>CORCOR 5 MG</td>
<td>TAB</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>Medicamento</td>
<td>2</td>
<td>Intermitente</td>
<td>Medicamento</td>
</tr>
<tr>
<td>14</td>
<td>JERINGA DES S/C UAS LOQ.302496</td>
<td>UN</td>
<td>2</td>
<td>45</td>
<td>78,6</td>
<td>Dispositivo</td>
<td>2</td>
<td>Intermitente</td>
<td>Medicamento</td>
</tr>
<tr>
<td>15</td>
<td>AMPIRONTE 3MG/ML</td>
<td>ANP</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>Medicamento</td>
<td>1</td>
<td>Intermitente</td>
<td>Medicamento</td>
</tr>
<tr>
<td>16</td>
<td>TUPAMAC 196 MG</td>
<td>TAB</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>Medicamento</td>
<td>3</td>
<td>Intermitente</td>
<td>Medicamento</td>
</tr>
<tr>
<td>17</td>
<td>ACTREONAM 1 G</td>
<td>VI</td>
<td>8</td>
<td>8</td>
<td>1</td>
<td>Medicamento</td>
<td>1</td>
<td>Intermitente</td>
<td>Medicamento</td>
</tr>
<tr>
<td>18</td>
<td>SPORAXIN 1100/200 Ml</td>
<td>VI</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Medicamento</td>
<td>1</td>
<td>Intermitente</td>
<td>Medicamento</td>
</tr>
<tr>
<td>19</td>
<td>CARNIL 129 G</td>
<td>BOL</td>
<td>8</td>
<td>22</td>
<td>3</td>
<td>Medicamento</td>
<td>2</td>
<td>Intermitente</td>
<td>Medicamento</td>
</tr>
<tr>
<td>20</td>
<td>PREDNISOLO 500 ML</td>
<td>BOL</td>
<td>4</td>
<td>22</td>
<td>3</td>
<td>Medicamento</td>
<td>2</td>
<td>Intermitente</td>
<td>Medicamento</td>
</tr>
<tr>
<td>21</td>
<td>EMEND 20 MG</td>
<td>CP</td>
<td>1</td>
<td>2</td>
<td>14</td>
<td>Medicamento</td>
<td>1</td>
<td>Intermitente</td>
<td>Medicamento</td>
</tr>
<tr>
<td>22</td>
<td>PERDION E. AGUA 83</td>
<td>UN</td>
<td>7</td>
<td>2</td>
<td>1</td>
<td>Dispositivo</td>
<td>2</td>
<td>Intermitente</td>
<td>Medicamento</td>
</tr>
<tr>
<td>23</td>
<td>FADILAX 20 MG</td>
<td>TAB</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>Medicamento</td>
<td>1</td>
<td>Intermitente</td>
<td>Medicamento</td>
</tr>
</tbody>
</table>

Tabla 13. Listado de productos que presentan demanda intermitente.

Fuente: Los autores

Para el desarrollo de la tabla se ejecuta los siguientes pasos:

a) Se agrupa los 1.599 productos y se hizo un filtro en la hoja de cálculo excel que devolviere los productos con demanda intermitente durante los 21 meses.

b) Se clasifica los códigos por tipo producto: dispositivos médicos o medicamentos.

c) Se ejecuta la función de excel “contar.si.conjunto” para que recuerce cuantos de los 1.599 productos presentan demanda intermitente y además para que devuelva en el conteo cuantos son medicamentos y dispositivos médicos.

En la tabla se puede observar los resultados del desarrollo, la cual refleja que 719 productos presentan demanda intermitente, de los cuales 260 son dispositivos médicos y 459 son medicamentos.
7.2.2 Nivel II: Categorización por coeficiente de variación

7.2.2.1 Demanda continua

Para la demanda continua se desarrolla el cálculo del coeficiente de variación para los 550 productos, con el fin de determinar cuántos de los 550 productos tienen un comportamiento constante u homogéneo en la demanda y cuántos tienen un comportamiento variable o heterogéneo en los 21 meses de demanda.

Por tal razón a la tabla de demanda continua se le agrega dos columnas, una en la que se define el coeficiente de variación de todos los productos con demanda continua y en la otra columna se define criterio como una función "si" de excel, que permita establecer una decisión lógica en la que devuelva el nombre de variable si, CV>0,5, de lo contrario devuelva el nombre constante, esto con el propósito de contar los productos que son constantes y variables.

Tabla 14. Cálculo del coeficiente de variación en productos que presentan demanda continua.

Fuente: Los autores

En la tabla se reflejan los resultados del conteo de los productos que tienen un comportamiento constante, que son 357 productos y 193 productos que presentan un comportamiento variable.
7.2.2.2 Demanda intermitente

Para la demanda intermitente se desarrolla el cálculo del coeficiente de variación cuadrático de los 719 productos, con el fin de determinar cuántos de los 719 productos tienen un comportamiento constante u homogéneo en la demanda y cuantos tiene un comportamiento variable u heterogéneo en los 21 meses de demanda.

Por tal razón a la tabla de demanda intermitente se le agrego dos columnas, una en la que se define el coeficiente de variación cuadrático de todos los productos con demanda intermitente y en la otra columna se define criterio como una función “si” de excel, que permita establecer una decisión lógica en la que devuelva el nombre de variable si, CV²>0,49, de lo contrario devuelva el nombre constante, esto con el propósito de contar los productos que son constantes y variables.

Tabla 15. Cálculo del coeficiente de variación cuadrático para productos que presentan demanda intermitente.

Fuente: Los autores

En la tabla se reflejan los resultados del conteo de los productos que tienen un comportamiento constante, que son 385 productos y 334 productos que presentan un comportamiento variable.
7.2.3 Nivel III: Categorización por tendencia y coeficiente de variación

De los 550 productos que presentan demanda continua, se estudia los patrones de comportamiento de los 21 meses de referencia de demanda histórica con los que cuenta la IPS en el curso del desarrollo de este trabajo de grado.

Del estudio de categorización por coeficiente de variación se identifica que de los 550 productos de demanda continua, tan solo 193 productos tienen un comportamiento variable, por esta razón estos 193 productos serán objeto del análisis para identificar los patrones de comportamiento de tendencia, estacional y cíclico. Para esto se hizo una selección aleatoria de 22 productos de los 193 productos que presentan un comportamiento variable, se ejecuta la función de excel “aleatorio.entre”, para que encontrara los 22 productos, a los cuales se le realizara un diagrama de dispersión para cada uno, con el propósito de encontrar los patrones de comportamiento que más se aproximen a la demanda de los 22 productos a analizar, los productos seleccionados son:

<table>
<thead>
<tr>
<th>N</th>
<th>Código</th>
<th>Descripción</th>
<th>Pve</th>
<th>CRITERIO</th>
<th>PRODUCTOS SECCIONADOS</th>
<th>Números Aleatorios</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1000001790</td>
<td>SEDA NEGRA TREZADA 2.9 9C26 186T</td>
<td>UN</td>
<td>VARIABLE</td>
<td>LOVASTATINA - GENFAR 20 MG</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>2000001204</td>
<td>DIAINEAL 2.5% ULTRABRAG X 2.000 ML</td>
<td>BOL</td>
<td>VARIABLE</td>
<td>KETAMINA HCL 500MG/10ML</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>1000000523</td>
<td>SET PERFUSOR SEGURA OPAKO 500ML 72887</td>
<td>UN</td>
<td>VARIABLE</td>
<td>SCOPA ENTERAL CORFLO 8FR</td>
<td>121</td>
</tr>
<tr>
<td>4</td>
<td>2000000221</td>
<td>DIAINEAL 1.5% - 500ML</td>
<td>BOL</td>
<td>VARIABLE</td>
<td>COLCHIMEDIO 0.5 MG</td>
<td>75</td>
</tr>
<tr>
<td>5</td>
<td>1000001263</td>
<td>INYET DE SEGURIDAD 16GA X 1.14 314544UN</td>
<td>UN</td>
<td>VARIABLE</td>
<td>PASTA ADAPT.TBO X 2 OZ HOLLISTER</td>
<td>119</td>
</tr>
<tr>
<td>6</td>
<td>1000000513</td>
<td>VENDA ALGODON LAMINADO DE 4X5</td>
<td>UN</td>
<td>VARIABLE</td>
<td>FEND 200 MG</td>
<td>24</td>
</tr>
<tr>
<td>7</td>
<td>2000001036</td>
<td>CELLCEPT 250 MG</td>
<td>CP</td>
<td>VARIABLE</td>
<td>CUTFRED SORBACT COMPRISA 7CMX5CM</td>
<td>181</td>
</tr>
<tr>
<td>8</td>
<td>2000000389</td>
<td>BETOPROLEOL 1 MG/ML</td>
<td>AMP</td>
<td>VARIABLE</td>
<td>VEND 50 MG</td>
<td>90</td>
</tr>
<tr>
<td>9</td>
<td>2000000272</td>
<td>EMBURE PLUS HN - 227 ML</td>
<td>LA</td>
<td>VARIABLE</td>
<td>ULTRA SET BOLSA DRENAJE 1L REF.MRM4368</td>
<td>102</td>
</tr>
<tr>
<td>10</td>
<td>2000001042</td>
<td>KETAMINA HCL 500MG/10ML</td>
<td>VI</td>
<td>VARIABLE</td>
<td>TAVEGIL 2MG/2ML</td>
<td>151</td>
</tr>
<tr>
<td>11</td>
<td>2000000147</td>
<td>KEPPIRA 100MG/ML - 5 ML</td>
<td>YI</td>
<td>VARIABLE</td>
<td>VITAMINA C 500 MG</td>
<td>35</td>
</tr>
<tr>
<td>12</td>
<td>2000001001</td>
<td>ATROPINA SULFATO (RYAN) 1MG/ML</td>
<td>AMP</td>
<td>VARIABLE</td>
<td>KEFZOL 1 G</td>
<td>107</td>
</tr>
<tr>
<td>13</td>
<td>1000002526</td>
<td>AGUA HIPOD. SECABLE 250X21</td>
<td>UN</td>
<td>VARIABLE</td>
<td>HYDREA 500 MG</td>
<td>113</td>
</tr>
<tr>
<td>14</td>
<td>2000000645</td>
<td>RIVOTRIL 0.5 MG</td>
<td>TAB</td>
<td>VARIABLE</td>
<td>AGUA HIPOD.DESECABLE 23GX1</td>
<td>36</td>
</tr>
<tr>
<td>15</td>
<td>2000001025</td>
<td>GLYTRIOL 1500 ML</td>
<td>B1M</td>
<td>VARIABLE</td>
<td>CARVEDIL 25 MG</td>
<td>17</td>
</tr>
<tr>
<td>16</td>
<td>2000000506</td>
<td>ATIVAN 2 MG</td>
<td>TAB</td>
<td>VARIABLE</td>
<td>SULFATO DE MAGNOSO 499 G</td>
<td>100</td>
</tr>
<tr>
<td>17</td>
<td>2000000123</td>
<td>DIAINEAL 2.5% - 200ML</td>
<td>BOL</td>
<td>VARIABLE</td>
<td>KEPPIRA 100MG/200ML</td>
<td>142</td>
</tr>
<tr>
<td>18</td>
<td>2000001421</td>
<td>GABAPENTA/NI 200 MG</td>
<td>CP</td>
<td>VARIABLE</td>
<td>BOLSA 1 SOLA PIEZA PEDAT HOLLISTER 3796</td>
<td>66</td>
</tr>
<tr>
<td>19</td>
<td>2000001407</td>
<td>QUIETAPINA 100 MG</td>
<td>TAB</td>
<td>VARIABLE</td>
<td>ARALEN 250 MG</td>
<td>65</td>
</tr>
<tr>
<td>20</td>
<td>2000001076</td>
<td>NUMALOG - 100MG/ML</td>
<td>AMP</td>
<td>VARIABLE</td>
<td>HYDROCINA 25 MG</td>
<td>77</td>
</tr>
</tbody>
</table>

Tabla 16. Generación aleatoria de productos para evaluar estacionalidad.

Fuente: Los autores

De los 22 productos seleccionados se observó el comportamiento variable de las demandas, no se evidencio patrones de comportamiento aproximados de estacionalidad, ni cíclicos, se apreció patrones de comportamiento por tendencia en la demanda de los productos.

De los 22 productos seleccionados se escoge 4 productos para presentarlos en el trabajo de grado.
Ilustración 13. Análisis de demanda para validar no estacionalidad en series de tiempo

Fuente: Los autores

Con la gráfica se puede validar que el análisis realizado anteriormente para los 22 productos, se presenta para los 4 productos el mismo patrón de tendencia en el comportamiento de la demanda, además no se percibe patrones estacionales o cíclicos en las demandas mensuales.

Por el análisis anterior se desarrolla una tabla de la categorización por patrón de comportamiento por tendencia y por coeficiente de variación, la cual se describe en los siguientes pasos:

a) Se ejecuta la función pendiente de excel que calcula la pendiente de la demanda mensual de todos los 550 productos que tienen una demanda continua.

b) Se agrega una columna que calcule el promedio de todas las demandas de los 550 productos.

c) Se agrega una columna que calcula la tendencia con la función lógica si de excel, que permite devolver cuales de las demanda tienen tendencia, con una prueba lógica que toma el valor de la pendiente de la demanda del
producto y lo divide por la columna de promedio del producto, si \(m \geq 0.1 \), devuelva tiene tendencia creciente, si no evalúe, si \(m \leq 0.1 \), devuelve tiene tendencia decreciente, si no se cumple ninguna de las anteriores devuelva el nombre sin tendencia.

d) Usar la función “contar.si.conjunto” de excel que integre el coeficiente de variación encontrado en la tabla 14 y la columna de tendencia hallada en el paso anterior, para que ejecute el conteo categorizando los 550 productos de demanda continua en la matriz de 6 opciones de categorización de demanda continua posible, las 6 opciones categorización de demanda continua posibles son:

- Tendencia creciente y coeficiente de variación constante.
- Tendencia creciente y coeficiente de variación variable.
- Tendencia decreciente y coeficiente de variación constante.
- Tendencia decreciente y coeficiente de variación variable.
- Sin tendencia y coeficiente de variación constante.
- Sin tendencia y coeficiente de variación variable.

<table>
<thead>
<tr>
<th>Código</th>
<th>Descripción</th>
<th>Prm</th>
<th>Diciembre</th>
<th>Febrero</th>
<th>Marzo</th>
<th>Coef Var</th>
<th>CRITERIO</th>
<th>Tendencia y m</th>
<th>Coeficiente de Variación</th>
<th>Demanda</th>
<th>Tendencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000001706</td>
<td>SEDA NEGRA TRENZADA 2.0 ICM 1917</td>
<td>UN</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1.62</td>
<td>VARIABLE</td>
<td>SIN TENDENCIA</td>
<td>CONSTANTE</td>
<td>357</td>
<td>SIN TENDENCIA</td>
</tr>
<tr>
<td>1000001706</td>
<td>DIANEAL 2.5% UL TRABAJO 2.000 ML</td>
<td>ML</td>
<td>19</td>
<td>20</td>
<td>1</td>
<td>1.40</td>
<td>VARIABLE</td>
<td>SIN TENDENCIA</td>
<td>VARIABLE</td>
<td>153</td>
<td>SIN TENDENCIA</td>
</tr>
<tr>
<td>1000000382</td>
<td>SET PERFUSOR SEGURIDAD OPACO SIN 728382</td>
<td>ML</td>
<td>19</td>
<td>16</td>
<td>12</td>
<td>1.37</td>
<td>VARIABLE</td>
<td>TENDENCIA CRECIENTE</td>
<td>VARIABLE</td>
<td>93</td>
<td>SIN TENDENCIA</td>
</tr>
<tr>
<td>1000000272</td>
<td>DIANEAL 1.5%</td>
<td>ML</td>
<td>4</td>
<td>4</td>
<td>21</td>
<td>1.24</td>
<td>VARIABLE</td>
<td>TENDENCIA CRECIENTE</td>
<td>VARIABLE</td>
<td>93</td>
<td>SIN TENDENCIA</td>
</tr>
<tr>
<td>1000000285</td>
<td>INSTE DE SEGURIDAD SEDA 9.1.1.4. 281464</td>
<td>UN</td>
<td>14</td>
<td>6</td>
<td>6</td>
<td>1.23</td>
<td>VARIABLE</td>
<td>SIN TENDENCIA</td>
<td>VARIABLE</td>
<td>93</td>
<td>SIN TENDENCIA</td>
</tr>
<tr>
<td>1000000285</td>
<td>VENDA ALGODON LAMINADO DE 235</td>
<td>UN</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>1.17</td>
<td>VARIABLE</td>
<td>TENDENCIA CRECIENTE</td>
<td>VARIABLE</td>
<td>93</td>
<td>SIN TENDENCIA</td>
</tr>
<tr>
<td>1000000176</td>
<td>CEBILCEPT 250 MG</td>
<td>CF</td>
<td>23</td>
<td>26</td>
<td>9</td>
<td>1.17</td>
<td>VARIABLE</td>
<td>TENDENCIA CRECIENTE</td>
<td>VARIABLE</td>
<td>93</td>
<td>SIN TENDENCIA</td>
</tr>
<tr>
<td>1000000176</td>
<td>INTOPOLICOL 1 MG/ML</td>
<td>ML</td>
<td>19</td>
<td>2</td>
<td>2</td>
<td>1.17</td>
<td>VARIABLE</td>
<td>TENDENCIA CRECIENTE</td>
<td>VARIABLE</td>
<td>93</td>
<td>SIN TENDENCIA</td>
</tr>
<tr>
<td>1000000272</td>
<td>ENSURE PLUS INF. 0.372 ML</td>
<td>LA</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>1.14</td>
<td>VARIABLE</td>
<td>TENDENCIA CRECIENTE</td>
<td>VARIABLE</td>
<td>93</td>
<td>SIN TENDENCIA</td>
</tr>
<tr>
<td>1000000272</td>
<td>RETAPINOL SOL. 0.01MG/10ML</td>
<td>LT</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>1.14</td>
<td>VARIABLE</td>
<td>TENDENCIA CRECIENTE</td>
<td>VARIABLE</td>
<td>93</td>
<td>SIN TENDENCIA</td>
</tr>
<tr>
<td>1000000152</td>
<td>SEDIPRAS 100MG/ML - 5 ML</td>
<td>ML</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.11</td>
<td>VARIABLE</td>
<td>TENDENCIA CRECIENTE</td>
<td>VARIABLE</td>
<td>93</td>
<td>SIN TENDENCIA</td>
</tr>
<tr>
<td>1000000176</td>
<td>ATRONCLA RAL PATO (R-VAX) 1MMO/ML</td>
<td>DPF</td>
<td>19</td>
<td>19</td>
<td>18</td>
<td>1.04</td>
<td>VARIABLE</td>
<td>TENDENCIA CRECIENTE</td>
<td>VARIABLE</td>
<td>93</td>
<td>SIN TENDENCIA</td>
</tr>
<tr>
<td>1000000176</td>
<td>AGUA HPDOC DE SECAMABLE 20G/31</td>
<td>LT</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>1.03</td>
<td>VARIABLE</td>
<td>TENDENCIA CRECIENTE</td>
<td>VARIABLE</td>
<td>93</td>
<td>SIN TENDENCIA</td>
</tr>
<tr>
<td>1000000176</td>
<td>REVITOL 2.5 MG</td>
<td>TAB</td>
<td>32</td>
<td>36</td>
<td>29</td>
<td>0.97</td>
<td>VARIABLE</td>
<td>TENDENCIA CRECIENTE</td>
<td>VARIABLE</td>
<td>93</td>
<td>SIN TENDENCIA</td>
</tr>
<tr>
<td>1000000176</td>
<td>GLYTRIL 1500 ML</td>
<td>BID</td>
<td>8</td>
<td>8</td>
<td>22</td>
<td>0.80</td>
<td>VARIABLE</td>
<td>TENDENCIA CRECIENTE</td>
<td>VARIABLE</td>
<td>93</td>
<td>SIN TENDENCIA</td>
</tr>
<tr>
<td>1000000064</td>
<td>ATIVAN 2 MG</td>
<td>TAB</td>
<td>63</td>
<td>63</td>
<td>134</td>
<td>0.95</td>
<td>VARIABLE</td>
<td>TENDENCIA CRECIENTE</td>
<td>VARIABLE</td>
<td>93</td>
<td>SIN TENDENCIA</td>
</tr>
<tr>
<td>1000000142</td>
<td>CARVEDOL 5 MG</td>
<td>TAB</td>
<td>30</td>
<td>30</td>
<td>28</td>
<td>0.94</td>
<td>VARIABLE</td>
<td>TENDENCIA CRECIENTE</td>
<td>VARIABLE</td>
<td>93</td>
<td>SIN TENDENCIA</td>
</tr>
<tr>
<td>1000000057</td>
<td>BACTRIM 400MG-80 MG AMPOLLAS BID</td>
<td>DPF</td>
<td>300</td>
<td>36</td>
<td>28</td>
<td>0.94</td>
<td>VARIABLE</td>
<td>TENDENCIA CRECIENTE</td>
<td>VARIABLE</td>
<td>93</td>
<td>SIN TENDENCIA</td>
</tr>
<tr>
<td>1000000295</td>
<td>DIANEAL 2.5%</td>
<td>BOL</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>0.94</td>
<td>VARIABLE</td>
<td>TENDENCIA CRECIENTE</td>
<td>VARIABLE</td>
<td>93</td>
<td>SIN TENDENCIA</td>
</tr>
<tr>
<td>1000000176</td>
<td>GUARABARTEN 300 MG</td>
<td>TAB</td>
<td>36</td>
<td>36</td>
<td>29</td>
<td>0.91</td>
<td>VARIABLE</td>
<td>TENDENCIA CRECIENTE</td>
<td>VARIABLE</td>
<td>93</td>
<td>SIN TENDENCIA</td>
</tr>
</tbody>
</table>

Tabla 17. Categorización por tendencia y por coeficiente de variación.

Fuente: Los autores

De la tabla se observa que de los 550 productos con demanda continua, 3 productos tienen un patrón de comportamiento con tendencia creciente y coeficiente de variación constante, 17 productos tendencia creciente y coeficiente de variación variable, 1 producto tiene tendencia decreciente y coeficiente de variación constante, 4 productos tienen tendencia decreciente y coeficiente de variación variable, 353 productos sin tendencia marcada en su comportamiento y presentan un coeficiente de variación constante, 172 productos sin tendencia marcada en su comportamiento y presentan un coeficiente de variación variable.
7.2.4 Nivel IV: Esquema de categorización para demanda intermitente

La categoría 4 está basada en el esquema de categorización para demanda intermitente de Syntetos, consiste en agrupar los productos según el intervalo promedio entre demandas, en cual se identifica con la variable (ρ) y el coeficiente de variación cuadrático, el cual se identifica con la variable (δ^2).

Para el desarrollo del esquema de categorización para demanda intermitente se desarrolla una tabla en la que se calcula el intervalo promedio entre demandas (ρ) y la categorización de la demanda para cada uno de los 719 productos que presentan demanda intermitente, de acuerdo a los siguientes pasos:

a) Se toma la tabla 15 de hoja de cálculo de excel que se desarrolló para la categorización por coeficiente de variación para productos que presentan demanda intermitente.

b) Se agrega una columna en la que se calcula para cada uno de los 719 productos el intervalo de ocurrencia entre dos demanda (Q_i), luego se suman todos los intervalos de ocurrencia entre dos demandas encontrados en los 21 meses de demanda histórica ($\sum Q_i$).

c) Se le agrega una segunda columna en la que se calcula para cada uno de los 719 productos el número de períodos donde la demanda no es cero (N), esto se realiza con la función “contar.si” de excel y se coloca el criterio diferente de cero, el cual recuenta solo las demanda donde no haya presencia de cero demandas los meses.

d) Se le agrega una tercera columna en la que se calcula para cada uno de los 719 productos, el intervalo promedio entre demandas ρ, esto se realiza tomando la columna $\sum Q_i$ dividiéndola por la columna de N.

e) Se le agrega una cuarta columna en la que se calcula la categorización de la demanda intermitente según Syntetos, esta se realiza con dos funciones lógica de excel, la función “si” y la función “y”, las cuales permiten integrar el coeficiente de variación cuadrático y el intervalo promedio entre demandas ρ, con el objetivo de categorizar los patrones de comportamiento que presentan los 719 productos que encontramos en la clínica con demandas intermitente, evaluados con las siguientes parámetros si $CV^2 < 0.49$ y $\rho < 1.32$, devuelva el nombre de demanda suave, si no evalúe, si $CV^2 > 0.49$ y $\rho < 1.32$, devuelva el nombre de demanda errática, si no evalúe, si $CV^2 > 0.49$ y $\rho > 1.32$, devuelva el nombre demanda grumosa, si no se cumple ninguna de las anteriores devuelva el nombre de demanda intermitente.

f) Usar la función “contar.si.conjunto” de excel para que ejecute el conteo categorizando el comportamiento de los 719 productos de demanda intermitente en la matriz propuesta por Syntetos.

<table>
<thead>
<tr>
<th>Código</th>
<th>Descripción</th>
<th>Pos.</th>
<th>Cifrado</th>
<th>P</th>
<th>C1</th>
<th>N</th>
<th>D</th>
<th>Caracterización de la demanda</th>
<th>Coeficiente de Varianza</th>
<th>Demanda Intermitente</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500000001</td>
<td>SORIDE DE 15 ML PRE 3,5%</td>
<td>P</td>
<td>VARIABLE</td>
<td>30.00</td>
<td>19.00</td>
<td>1,05</td>
<td>DEMANDA ERRÁTICA</td>
<td>GRUAYOS</td>
<td>GRUAYOS</td>
<td></td>
</tr>
<tr>
<td>1500000002</td>
<td>ELOPONEX 10 MG</td>
<td>TAB</td>
<td>VARIABLE</td>
<td>26.00</td>
<td>12.00</td>
<td>1.17</td>
<td>DEMANDA ERRÁTICA</td>
<td>GRUAYOS</td>
<td>GRUAYOS</td>
<td></td>
</tr>
<tr>
<td>1500000003</td>
<td>TFMAL 50 MG</td>
<td>P</td>
<td>VARIABLE</td>
<td>15.00</td>
<td>19.00</td>
<td>1.92</td>
<td>DEMANDA ERRÁTICA</td>
<td>GRUAYOS</td>
<td>GRUAYOS</td>
<td></td>
</tr>
<tr>
<td>1500000004</td>
<td>EMMAL 100 MG/ML</td>
<td>AMP</td>
<td>VARIABLE</td>
<td>10.00</td>
<td>7.00</td>
<td>2.71</td>
<td>DEMANDA ERRÁTICA</td>
<td>GRUAYOS</td>
<td>GRUAYOS</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 18. Esquema de categorización de patrones de comportamiento de demanda intermitente.

Fuente: Los autores

De la tabla se observa que de los 719 productos con demanda intermitente, 55 productos están categorizados por un patrón de comportamiento de demanda

66
erráticas, 58 productos están categorizados por un patrón de comportamiento de demanda suave, 278 productos están categorizados por un patrón de comportamiento de demanda intermitente grumosa, 327 productos están categorizados por un patrón de comportamiento de demanda intermitente agrupada “intermittent clumped”.

7.2.5 Panorama general de la categorización de la demanda

Se desarrolla una tabla de hoja de cálculo de excel, en la que se vinculó los resultados de cada una de las categorías, para obtener una visualización general de la categorización de los patrones de comportamiento los 1.599 productos objeto de análisis del trabajo de grado.

Se presenta la tabla 19.

<table>
<thead>
<tr>
<th>Nivel I: Categoría 1</th>
<th>Nivel II: Categoría 2</th>
<th>Nivel III: Categoría 3</th>
<th>Nivel IV: Categoría 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de Demanda</td>
<td>Coeficiente Variación</td>
<td>Tendencia</td>
<td>Coeficiente Variación</td>
</tr>
<tr>
<td>Continua</td>
<td>0.8 < 0.5</td>
<td>567</td>
<td>TENDENCIA CREciente</td>
</tr>
<tr>
<td></td>
<td>Constante</td>
<td>(0.1 < m < 1)</td>
<td>363</td>
</tr>
<tr>
<td></td>
<td>Variable</td>
<td>(5 > m > 0.5)</td>
<td>1</td>
</tr>
<tr>
<td>Intermitente</td>
<td>0.1 < 0.5</td>
<td>193</td>
<td>TENDENCIA CREciente</td>
</tr>
<tr>
<td></td>
<td>Constante</td>
<td>(5 < m > 1)</td>
<td>172</td>
</tr>
<tr>
<td></td>
<td>Variable</td>
<td>(1 < m < 0.1)</td>
<td>4</td>
</tr>
<tr>
<td>Total Productos</td>
<td>1.599</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intermitente</td>
<td>719</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variable</td>
<td>(m < 0.49)</td>
<td>334</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Constante</td>
<td>(y < p < 1)</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>Variable</td>
<td>(y < p < 0.1)</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Constante</td>
<td>(y > 1)</td>
<td>279</td>
</tr>
<tr>
<td></td>
<td>Variable</td>
<td>(y > 1.3)</td>
<td>279</td>
</tr>
</tbody>
</table>

Tabla 19. Panorama general de la categorización de la demanda de los productos de la IPS de cuarto nivel

Fuente: Los autores

En el desarrollo de este trabajo no se evidencio bibliografías que trataran este tema de manera conjunta, sino que se especializan de manera separada, llevando este trabajo a un nivel de mayor complejidad intentando consolidar los conceptos de demanda continua y de demanda intermitente en un mismo documento.

55 BABILONI, María E. (2009), Tesis Doctoral, Una metodología para la estimación eficiente del “stock” de referencia en políticas de revisión periódica con demanda discreta, pág. 15-16.
En la tabla 19 se observa la información consolidada del análisis que se le realizó a los 1.599 productos por cada uno de los niveles de categorización teniendo en cuenta si el comportamiento de demanda es constante o intermitente.
Para el desarrollo de este trabajo de grado se muestra los conceptos principales que se abordaran en este trabajo y que permitirá de una forma clara la comprensión del lector.

Por eso lo primero es poner en contexto al lector, conectarlo con una secuencia lógica de procesos cognitivos como los son: la posibilidad de interpretar y analizar una serie de demanda cuantitativas por medio de una medición de estadística descriptiva, luego se desea que pueda ordenar y agrupar la serie de demandas cuantitativas, por medio de una metodología clásica que permite dar una priorización administrativa a la demanda, agrupando los productos de acuerdo a unos elementos característicos similares que presenten los productos, que le dan una orientación focalizada hacia cierto grupo de productos que genera el mayor impacto negativo en la estabilidad y rentabilidad del negocio, si no, se identifica el grupo de productos y se administra los recursos en función de la priorización encontrada, la metodología es la clasificación ABC, en el desarrollo de la clasificación de la metodología se encontró con la presencia de un grupo de productos que se incorporaron como un grupo separado, se les llama grupo de productos tipo D, los cuales se subdividieron en tres sub grupos considerando sus características especiales, el primer subgrupo, se le llama D1, este grupo lo conforman los productos nuevos que se incluyen en el vademécum institucional, y después de seis meses serán catalogados en la clasificación ABC., mientras que esto sucede se debe implementar unos modelos de pronósticos que se ajusten a un escenario de mesura en el que no se especula con patrones de tendencia, por el poco periodo de introducción que tiene el producto en la IPS, y no se tiene el suficiente número de demanda para predecir la demanda con un buen coeficiente de variación que permita identificar un patrón constantes como lo son:

1. Naive
2. Naive trend
3. Promedio móvil

El segunda subgrupo, se le llama D2, este grupo lo conforman los productos que durante los 21 meses de demanda analizados por los autores, presentaron dos periodos donde ocurrió demanda, a este grupo de producto se separó para que el comité de farmacia diera un veredicto, que determinara que se iba hacer con la continuidad o inhabilitación de los productos en la IPS, para esta serie de productos se planteó un esquema de abastecimiento baja pedido “make to order”

El tercer subgrupo, se le llamo D3, este grupo de productos lo conforman los medicamento que se identifican con el nombre de vitales no disponible, la
planeación de abastecimiento para estos productos se desarrolló el mismo enfoque que para el subgrupo \(D^2 \), se estableció una política abastecimiento bajo pedido médico asistencial.

Aquí se presenta la necesidad de determinar una metodología racional que permita calcular la cantidad de productos que se requieren para satisfacer la demanda del producto en un periodo determinado de tiempo, la metodología que se utiliza en el trabajo de grado es una metodología existente se llama pronósticos y consiste en el estudio de patrones de comportamiento de la demanda histórica y a partir de ella se pueda predecir las demandas del futuro, esperando que los patrones de comportamiento de la demandas del futuro presente los mismos patrones de comportamiento de la demanda histórica.

El entorno en el que se desarrolla el trabajo de grado es un ambiente de servicio, la clasificación ABC por rotación no es solo la única prioridad, existe otra clasificación A por importancia relevante, cuya criterio se aleja de la filosofía de tener disponibilidad del producto que se esté moviendo continuamente y lo gobierna el criterio de la ética médica profesional, la misión de las IPS, regulaciones y leyes para las IPS de cuarto nivel, al consolidar la clasificación ABC para administrar la demanda, de acuerdo a un criterio de administración de los recursos, se identifica que en el grupo de productos clasificados como A, se presenta un fenómeno en el cual un grupos de esto productos clasificados como A, tienen una demanda con un comportamiento continuo en los meses y otro grupo clasificado como A, tiene una demanda con un comportamiento intermitente en los meses, surge la necesidad de categorizar los patrones de comportamiento de las demandas.

Para tener una mayor exactitud en el pronóstico se debe estudiar los patrones de comportamiento que presenta la serie de meses de demanda continua y estudiar los patrones de comportamiento que presenta la serie de meses de demanda intermitente.

En la serie de meses de demanda intermitente se estudia el esquema de categorización para patrones de demanda intermitente propuesto por Syntetos, en el que propone dos modelos de pronósticos.

En la serie de meses de demanda continua se desarrolla la categorización de la demanda continua, en la que se estudió el método gráfico para los productos que tiene una demanda continua, los cuales son revisados con el gráfico de dispersión para encontrarle los patrones de comportamiento que se pueden identificar fácilmente como lo son los patrones de comportamiento estacional y cíclicos.

Los patrones de comportamiento erráticos de la demanda se evalúa con el parámetro del coeficiente de variación, el cual lo determinaron los autores con un criterio de decisión mayor al 0,5, debido a que los autores desean tener un ambiente de demanda determinística en el que se pueda determinar con
certidumbre el patrón de comportamiento que presenta la demanda y no en la que la variabilidad de las demandas frente al promedio de las demandas sea tan dispersa por que se presentan demandas atípicas que causa que la posibilidad de ser predichas por un modelos de pronósticos se ajusten a la probabilidad de escoger correctamente el resultado que se obtiene después del lanzamiento de una moneda al aire y este no es el objetivo del trabajo evaluar la incertidumbre de la demanda con modelos estocásticos, es decir, no vale la pena en términos de costo beneficio desgastarse con un modelo de pronostico que no se puede ajustar al patrón de la demanda del producto, por lo anterior sería más rentable para la IPS, hacer un promedio de las demanda, he implementarle un sistema de revisión continua con un punto de reorden, el cual supervise y controle la demanda para que no se presenten agotados en los productos.

Si, el coeficiente de variación calculado para la demanda del producto tiene un resultado menor de 0,5, se evalúa la tendencia de las demandas continuas, para el patrón de comportamiento de tendencia los autores, la interpretaron con un parámetro el cual si, la pendiente de la demanda de los meses es 10% mayor o -10% menor al promedio de la demanda de los meses del producto, se considera que el producto presenta tendencia creciente y decreciente respectivamente y se debe ejecutar los modelos pronostico que se ajustan a modelos de tendencia como lo son:

1. Suavizado exponencial doble
2. Promedio doble mejorado
3. Naive trend
4. Variación móvil
5. Regresión lineal
6. Regresión lineal móvil
7. Promedio móvil
8. Promedio móvil ponderado

Si no se cumple ninguna de las opciones, al evaluar la tendencia se encuentra entre un rango de (-10% a 10%) frente al promedio de las demandas, el producto no presenta tendencia y se debe emplear modelos de pronósticos de nivel o que presentan un comportamiento constante en las demandas mensuales como lo son:

1. Promedio móvil
2. Promedio móvil ponderado
3. Suavizado exponencial simple
4. Promedio doble mejorado
5. Naive
Luego de identificar los productos con demanda continua con patrones de comportamiento con tendencia y sin tendencia se emplea un sistema de revisión continuo propuesto por Sipper para modelos de decisión por tiempo para demanda continua, con el objetivo de encontrar el cuándo se pide el producto, de acuerdo a la demanda del producto en el futuro, el punto de reorden, implementando un modelo de inventario (Q,R) y una política de nivel de servicio “α” igual al 97,5%, que permita tener una disponibilidad del producto antes que la demanda ocurra, con el objetivo de brindarle al paciente una expectativa prolongación de vida, por si la dispensación del producto en el momento requerido le aumenta la posibilidad de continuar con vida.

El modelo de planeación de la demanda se retroalimenta mensual con el sistema integrado ERP que maneja la IPS, el cual lleva un registro histórico del comportamiento de la demanda mensual de los 1.599 productos, actualizando la información de los 1.599 productos a partir primer de proceso de entrada de la propuesta del modelo metodológico de planeación de la demanda, el cual es el análisis de la demanda de cada producto llegando en algunos casos a cambiarle el patrón de comportamiento de los productos obligando al modelo de planeación de la demanda a ajustarse al comportamiento de la demanda de cada producto.
Tabla 20. Esquema de planeación de la demanda y de los inventarios de medicamentos y dispositivos médicos de uso en pacientes hospitalizados en una IPS de cuarto nivel.

Fuente: Los autores
Para este objetivo se seleccionaron 12 modelos de pronósticos para demanda continua y 2 para demanda intermitente, a los que se le desarrollaron plantillas en hojas de cálculo de excel, a cada plantilla se le incluyó los siguientes indicadores:

a) Los indicadores de pronóstico que son el MAD, MSD y el MAPE.

b) La prueba de normalidad de las demandas, con la función lógica “si” de excel, la cual se evalúa con el valor absoluto del MAD menos el MSD y todo dividido por MAD, si el valor encontrado es menor de 10% las demandas tienen un comportamiento normal, si no se cumple las demandas tienen un comportamiento no normal.

c) El coeficiente de variación que evalúa, si las demandas son normales, devuelve el valor encontrado del MAD y lo multiplica por 1,25 para encontrar la desviación de la demanda, si las demandas no presentan un comportamiento de normalidad, devuelve el valor encontrado del MSD y le saca la raíz cuadrada al valor encontrado.

d) La señal de seguimiento\(^{56}\) para tener un monitoreo sobre la dispersión de las demandas mensuales con relación al pronóstico.

e) Los límites de control del error del modelo de pronóstico con un nivel de confianza del 95%, que garantiza que la dispersión del error del modelo de pronóstico de la demanda se encuentran dentro estos límites inferior y superior.

f) Los límites de control con un nivel de confianza del 95%, que garantiza que la dispersión del pronóstico de la demanda se encuentran dentro estos límites inferior y superior.

g) Celda formulada que cuenta el número de demanda que se presentan en la hoja de cálculo.

h) Celda formulada que se identifica con el nombre No. Datos que cumple la función de determinar el período de inicialización del pronóstico.

i) Celda formulada que se identifica con el nombre de ventana, la cual cumple la función de seleccionar N datos hacia arriba para el cálculo del modelo que se desea pronosticar.

j) Celda formulada que se identifica con el nombre de pendiente que cumple la función de calcular la pendiente de la demanda mensual.

k) Celda con parámetros de suavización dependiendo del modelo de pronósticos, las cuales son:

- α: que determina el parámetro de suavización de nivel o constante.
- β: que determina el parámetro de suavización de tendencia.
- δ: que determina el parámetro de suavización de estacionalidad.

l) Para el modelo de suavización exponencial triple se adicionó los parámetros:

- m: que determina el número de períodos.
- L: que determina el número de estaciones.

m) Se desarrolló cada plantilla de modelo de pronóstico para que la función de optimización "solver" de excel, calculará automáticamente el mejor período de inicialización, la mejor ventana (N), los mejores parámetros de suavización α, β, δ. Para los modelos de Winter se formula para que calcule el número de periodo m y el número de estación L, para el modelo de promedio móvil ponderado se formula para que calcule el ponderado de cada ventana (N).

n) Se agruparon todas las plantillas en un solo libro de excel.

o) Se creó una hoja de cálculo en el libro de excel, se le identifica con el nombre de inicio, en esta hoja de cálculo se consolida un panorama general de los 14 modelos de pronósticos y toda la información vinculada con cada uno de ellos, se crea el campo de ingreso de la demanda que conecta con el campo de ingreso de la demanda de los 14 modelos de pronósticos, el campo de ingreso de la demanda esta formulado para:

- Arrojar el gráfico de dispersión de la demanda.
- Identificar, si la demanda es continua calcule los 12 modelos de pronóstico para demanda continua, si no, calcula los 2 modelos de pronósticos para demanda intermitente.
- Calcular el campo de estadística básica, que está conformado por: desviación estándar, media, valor mínimo, valor máximo, coeficiente de variación, coeficiente de variación cuadrático, comportamiento intermitente o continuo, variabilidad, tendencia.

La tabla 8 en la que se desarrolló la clasificación consolidada de los 1.599 productos, es la que permite visualizar cuales son los productos a los que el planeador debe administrar la demanda con un enfoque administrativo de
recursos dando un criterio de prioridad alta a los productos clasificados como A, moderada a los clase B y baja a los clase C.

Para este trabajo de grado se eligieron 9 productos, 7 productos clasificados como clase A y que presentan una demanda continua, que generan el mayor impacto en la sustentabilidad y sostenibilidad de la IPS medidos por el flujo de la cadena de suministros debido a la rotación de la demanda mensual y a productos clasificados por importancia relevante, los 2 productos faltantes se eligieron clasificados como clase A y que presentan una demanda con comportamiento intermitente.

Los 9 productos elegidos clase A son:

<table>
<thead>
<tr>
<th>Código</th>
<th>Descripción</th>
<th>Pres</th>
<th>Consumo promedio mensual</th>
<th>% Individual</th>
<th>% Acumulado</th>
<th>Clasificación Tipo de Producto</th>
<th>Clasificación Rotación</th>
<th>Categorización Demanda</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000000434</td>
<td>MERONEM 1 G</td>
<td>AMF</td>
<td>191.743.337</td>
<td>9.6%</td>
<td>9.6%</td>
<td>Medicamento</td>
<td>CONTINUA</td>
<td>CONTINUA</td>
</tr>
<tr>
<td>100000051</td>
<td>SET P. ADMON BOMBA INFUSION</td>
<td>UN</td>
<td>54.397.975</td>
<td>2.7%</td>
<td>12.4%</td>
<td>Dispositivo Médico</td>
<td>CONTINUA</td>
<td>CONTINUA</td>
</tr>
<tr>
<td>2000000425</td>
<td>KIOVIG 5G/50ML</td>
<td>VI</td>
<td>45.112.668</td>
<td>2.3%</td>
<td>17.7%</td>
<td>Medicamento</td>
<td>CONTINUA</td>
<td>CONTINUA</td>
</tr>
<tr>
<td>2000000114</td>
<td>CANDIDAS 50 MG/10 ML</td>
<td>AMF</td>
<td>36.193.530</td>
<td>1.8%</td>
<td>16.5%</td>
<td>Medicamento</td>
<td>CONTINUA</td>
<td>CONTINUA</td>
</tr>
<tr>
<td>2000000691</td>
<td>SOLUCION SALINA NORMAL 0.90 % - 100 ML</td>
<td>B1</td>
<td>33.568.061</td>
<td>1.7%</td>
<td>25.5%</td>
<td>Medicamento</td>
<td>CONTINUA</td>
<td>CONTINUA</td>
</tr>
<tr>
<td>2000000735</td>
<td>TAZOCIN 4.5 G</td>
<td>VI</td>
<td>31.833.460</td>
<td>1.5%</td>
<td>27.1%</td>
<td>Medicamento</td>
<td>CONTINUA</td>
<td>CONTINUA</td>
</tr>
<tr>
<td>2000000154</td>
<td>CLEXANE 40MG/0.4ML</td>
<td>JG</td>
<td>29.787.435</td>
<td>1.5%</td>
<td>26.6%</td>
<td>Medicamento</td>
<td>CONTINUA</td>
<td>CONTINUA</td>
</tr>
<tr>
<td>2000000145</td>
<td>NOVESEVEN RT 2 MG</td>
<td>VI</td>
<td>48.108.798</td>
<td>2.4%</td>
<td>31.0%</td>
<td>Medicamento</td>
<td>INTERMITENTE</td>
<td>INTERMITENTE</td>
</tr>
<tr>
<td>1000000256</td>
<td>CANISTER 1000CC ATS REF: M6275093</td>
<td>UN</td>
<td>11.946.178</td>
<td>0.6%</td>
<td>31.6%</td>
<td>Dispositivo Médico</td>
<td>INTERMITENTE</td>
<td>INTERMITENTE</td>
</tr>
</tbody>
</table>

Tabla 21. Productos elegidos para pronosticar y encontrarle un modelo de inventarios

Fuente: Los autores

Se observa en la tabla 21 que el grupo de 9 productos tienen un consumo promedio mensual acumulado de 31,6% del 100% total de consumo promedio mensual que presentan los 1.599 productos objeto de análisis de este trabajo de grado, se selecciona estos 9 productos por su importante nivel de representación en la clasificación consolidada por importancia elaborada por los autores, en donde se permite visualizar la complejidad del sector en el grupo de medicamentos y dispositivos médicos que entran a formar parte de los productos clasificados como Clase A, los cuales requieren un criterio de prioridad alta en la administración de los recursos en los que se presenta dos patrones de comportamiento en la demanda, un patrón con comportamiento de demanda continua en los que periodo a periodo tiene ocurrencia de demanda, este patrón es el normalmente observado en los sectores de manufactura de bienes en donde se da prioridad o se clasifica A, a los productos con alta rotación y el otro patrón con comportamiento de demanda intermitente, este patrón de comportamiento no es común en las clasificaciones ABC, por esto hace relevante la importancia de

57 Administración de recursos: tecnológicos, humano, tiempo, capacidad CEDIS, capacidad servicios farmacéuticos, proveedores (tiempo de entrega).
desarrollar una metodología de planeación de la demanda para productos que tengan un comportamiento de la demanda intermitente.

En la siguiente tabla 22 se empieza a desarrollar la metodología planeación de la demanda mediante un esquema sistematizado de pronóstico propuesto por los actores en el trabajo de grado.

Tabla 22. Análisis consolidado de los modelos de pronóstico.

Fuente: Los autores

Se observa en la tabla 22 la consolidación de criterios en el desarrollo de la propuesta metodológica, en los que se integra la demanda del producto a analizar, la selección de una agrupación de criterios que conforman la estadística básica, la información gráfica que permite de forma visual sacar conclusiones sobre patrones de demanda con comportamiento estacional o cíclico, los 12 modelos de pronóstico para demanda continua y 2 modelos para demanda intermitente, se integran los indicadores para medir los modelos de pronósticos, el resultado de cada uno de los modelo de pronósticos F_{T+K} y los límites que ofrece el modelo de pronósticos con una confiabilidad del 95%.
Tabla 23. Plantilla de soporte mejor modelo de pronóstico para el producto Meronem vial x 1G.

Fuente: Los autores
Para la selección del modelo de pronóstico se hace los siguientes pasos:

1. Para el primer producto seleccionado en este caso es el Meronem vial 1G, lo primero que se hace es ingresar la demanda a la hoja de inicio como se observa en la tabla 22.

2. Se ejecuta la función “solver” para los 12 modelos de pronósticos.

3. Se categoriza por tipo comportamiento de la demanda, si se presenta demanda continua o intermitente.

4. Si el comportamiento de la demanda es intermitente, utilizar el esquema de categorización de Syntetos para seleccionar el modelo de pronóstico, de acuerdo a la ilustración 9.

5. Como se ilustra en la tabla 22, el comportamiento de la demanda es continuo por que la hoja de inicio solo está calculando modelos de pronósticos continuos, se observa el resumen consolidado de los resultados obtenido por cada modelo.

6. En la tabla 22, al observar el grafico de dispersión del comportamiento del Meronem vial x 1G, se evalúa visualmente que el producto no presenta un patrón de comportamiento estacional en el año, ni se observa un patrón de comportamiento cíclico en los 21 meses, por esta evidencia grafica se descartan los modelos que analizan patrones estaciones y cíclicos.

7. En la tabla 22, se observa en el campo de estadística básica el coeficiente de variación, el cual es 0,18 < 0,5, lo que descarta el comportamiento errático de la demanda del Meronem vial x 1G.

8. Lo siguiente es revisar la tendencia de la demanda, a criterio de los autores se evalúa la tendencia de la demanda, considerando tendencia cuando la pendiente sea mayor o menor al 10% del promedio de la demanda. Para el caso del Meronem vial x 1G, en el campo de estadística básica de la tabla 20, evalúa que el comportamiento de la demanda no presenta tendencia, consecuente con este criterio se consideraran los modelos de pronósticos que no presentan tendencia.

9. Los indicadores de pronósticos nos reflejan que los modelos de pronostico sin tendencia tiene un comportamiento de normalidad en la demanda, esto permite identificar que las demandas mensuales no presenta comportamiento atípicas, por esto el indicador de medición de error de pronostico que mejor se ajusta seria el MAD y como el objetivo seria minimizar el error de pronóstico, el mejor modelo seria el promedio móvil con un MAD de 217,76 y una desviación de 272,20 aproximadamente 272.
viales de Meronem x 1G, el pronóstico para el mes de octubre sería 2611 viales de Meronem x 1G.
Tabla 24. Resumen consolidado de modelo de pronóstico para los 9 productos seleccionados.

<table>
<thead>
<tr>
<th>Modelo de Pronóstico</th>
<th>MAD</th>
<th>MSD</th>
<th>(\sigma) MAD</th>
<th>(\sigma) MSD</th>
<th>(\Delta) MAD-MCD</th>
<th>Asumo</th>
<th>USO</th>
<th>VALOR</th>
<th>(F_{FIRK})</th>
<th>Li</th>
<th>Ls</th>
</tr>
</thead>
<tbody>
<tr>
<td>MERONEM 1 G AMP</td>
<td>217,76</td>
<td>78020,08</td>
<td>272,20</td>
<td>279,92</td>
<td>2,62%</td>
<td>Nornadad</td>
<td>MAD</td>
<td>272,20</td>
<td>2,552</td>
<td>2,018</td>
<td>3,085</td>
</tr>
<tr>
<td>SET P.ADMON BOMBA INFUSION UN</td>
<td>120,89</td>
<td>52906,84</td>
<td>151,11</td>
<td>230,01</td>
<td>52,21%</td>
<td>Nornadad</td>
<td>MSD</td>
<td>230,01</td>
<td>3,768</td>
<td>3,317</td>
<td>4,219</td>
</tr>
<tr>
<td>KOVIG 5G/50ML VI</td>
<td>21,09</td>
<td>767,91</td>
<td>26,36</td>
<td>27,71</td>
<td>5,12%</td>
<td>Nornadad</td>
<td>MAD</td>
<td>26,36</td>
<td>73</td>
<td>21</td>
<td>124</td>
</tr>
<tr>
<td>CANDIDAS 50 MG/10 ML AMP</td>
<td>16,55</td>
<td>633,44</td>
<td>20,68</td>
<td>25,17</td>
<td>21,68%</td>
<td>Nornadad</td>
<td>MSD</td>
<td>25,17</td>
<td>100</td>
<td>51</td>
<td>149</td>
</tr>
<tr>
<td>SOLUCION SALINA NORMAL 0.90% - 10 BY AMP</td>
<td>354,48</td>
<td>117763,95</td>
<td>1069,10</td>
<td>1085,19</td>
<td>1,60%</td>
<td>Nornadad</td>
<td>MAD</td>
<td>1068,10</td>
<td>31,564</td>
<td>29,470</td>
<td>33,657</td>
</tr>
<tr>
<td>TAZOCIN 4.5 G VI</td>
<td>184,68</td>
<td>39258,74</td>
<td>230,85</td>
<td>198,14</td>
<td>14,17%</td>
<td>Nornadad</td>
<td>MSD</td>
<td>198,14</td>
<td>635</td>
<td>246</td>
<td>1,023</td>
</tr>
<tr>
<td>CLEXANE 40MG/0.4ML JG</td>
<td>90,23</td>
<td>15808,80</td>
<td>112,78</td>
<td>125,73</td>
<td>11,48%</td>
<td>Nornadad</td>
<td>MSD</td>
<td>125,73</td>
<td>1,821</td>
<td>1,574</td>
<td>2,067</td>
</tr>
<tr>
<td>CONTRATHION 0.2MG/100ML VI</td>
<td>24,84</td>
<td>1376,27</td>
<td>91,04</td>
<td>97,10</td>
<td>19,50%</td>
<td>Nornadad</td>
<td>MSD</td>
<td>97,10</td>
<td>13</td>
<td>-9</td>
<td>86</td>
</tr>
<tr>
<td>CANISTER 100CC ATS REF:MB275093 UN</td>
<td>9,89</td>
<td>149,68</td>
<td>12,36</td>
<td>12,23</td>
<td>1,00%</td>
<td>Nornadad</td>
<td>MAD</td>
<td>12,36</td>
<td>16</td>
<td>-9</td>
<td>40</td>
</tr>
<tr>
<td>NOVOEVEING 2 MG VI</td>
<td>0,88</td>
<td>1,60</td>
<td>1,10</td>
<td>1,26</td>
<td>14,36%</td>
<td>Nornadad</td>
<td>MSD</td>
<td>1,26</td>
<td>1</td>
<td>-2</td>
<td>3</td>
</tr>
</tbody>
</table>

Fuente: Los autores
Como se ilustra en la tabla 24.

2. Para el dispositivo médico set p. admon bomba infusión, el mejor modelo de pronóstico es el promedio doble móvil. La demanda de este producto presenta un comportamiento no normal, quiere decir que la demanda mensual del producto tiene una dispersión alta con relación al promedio de la demanda del producto, posiblemente puede ser que se presentaron algunos meses con demanda atípicas, por esto el indicador de medición de error de pronóstico que mejor se ajusta sería el MSD y como el objetivo sería minimizar el error de pronóstico, el MSD sería de 52906,84, con una desviación de 230,01 aproximadamente 230 unidades del dispositivo médico set p. admon bomba infusión, el pronóstico para el mes de octubre sería de 3768 unidades de set p. admon bomba infusión.

3. Para el medicamento Kiovig 5G/50ml, el mejor modelo de pronóstico es suavización exponencial simple, los indicadores de pronósticos nos reflejan que los modelos de pronóstico sin tendencia tiene un comportamiento de normalidad en la demanda, esto permite identificar que las demandas mensuales no presenta comportamiento atípicas, por esto el indicador de medición de error de pronóstico que mejor se ajusta sería el MAD y como el objetivo sería minimizar el error de pronóstico, el mejor MAD sería de 21,09, con una desviación de 26,36 aproximadamente 26 viales de Kiovig 5G/50ml, el pronóstico para el mes de octubre sería de 73 viales de Kiovig 5G/50ml.

4. Para el medicamento Cancida 50MG/50ml, el mejor modelo de pronóstico es el promedio doble móvil. La demanda de este producto presenta un comportamiento no normal, quiere decir que la demanda mensual del producto tiene una dispersión alta con relación al promedio de la demanda del producto, posiblemente puede ser que se presentaron algunos meses con demanda atípicas, por esto el indicador de medición de error de pronóstico que mejor se ajusta sería el MSD y como el objetivo sería minimizar el error de pronóstico, el mejor MSD sería de 633,44, con una desviación de 25,17 aproximadamente 25 ampolla Cancida 50MG/50ml, el pronóstico para el mes de octubre sería de 100 ampolla Cancida 50MG/50ml.

5. Para el medicamento Solución salina normal 0,90%-100 ml, el mejor modelo de pronóstico es el promedio móvil ponderado, los indicadores de pronósticos nos reflejan que los modelos de pronóstico sin tendencia tiene un comportamiento de normalidad en la demanda, esto permite identificar que las demandas mensuales no presenta comportamiento atípicas, por esto el indicador de medición de error de pronóstico que mejor se ajusta sería el MAD y como el objetivo sería minimizar el error de pronóstico, el mejor MAD sería de 854,48, con una desviación de 1068,10
aproximadamente 1068 bolsa de Solución salina normal 0,90%-100 ml, el pronóstico para el mes de octubre sería de 31564 bolsas de Solución salina normal 0,90%-100 ml.

6. Para el medicamento Tazocin 4,5G, el mejor modelo de pronóstico es el promedio doble móvil la demanda de este producto presenta un comportamiento no normal, quiere decir que la demanda mensual del producto tiene una dispersión alta con relación al promedio de la demanda del producto, posiblemente puede ser que se presentaron algunos meses con demanda atípicas, por esto el indicador de medición de error de pronóstico que mejor se ajusta sería el MSD y como el objetivo sería minimizar el error de pronóstico, el mejor MSD sería de 39258,34, con una desviación de 198,14 aproximadamente 198 viales de Tazocin 4,5G, el pronóstico para el mes de octubre sería de 635 viales de Tazocin 4,5G.

7. Para el medicamento Clexane 40MG/0,4ml, el mejor modelo de pronóstico es suavización exponencial simple la demanda de este producto presenta un comportamiento no normal, quiere decir que la demanda mensual del producto tiene una dispersión alta con relación al promedio de la demanda del producto, posiblemente puede ser que se presentaron algunos meses con demanda atípicas, por esto el indicador de medición de error de pronóstico que mejor se ajusta sería el MSD y como el objetivo sería minimizar el error de pronóstico, el mejor MSD sería de 15808,80, con una desviación de 125,73 aproximadamente 126 jeringas de Clexane 40MG/0,4ml, el pronóstico para el mes de octubre sería de 1821 jeringas de Clexane 40MG/0,4ml.

8. Para el medicamento Novoseven RT 2MG, se compara el resultado del modelo de pronóstico con el esquema de categorización de la demanda intermitente propuesto por Syntetos desarrollado en la tabla 18, en la que se debe hallar el intervalo promedio entre demanda y el coeficiente de variación cuadrático, para el caso analizado la categorización presenta un patrón de demanda intermitente “clumped” y para este caso según el esquema de categorización se debe hacer un pronóstico con el modelo de Syntetos y Boylan, coincide con lo que el análisis de pronóstico refleja en los resultados con un MSD de 1,6 y una desviación de 1,26 aproximadamente 1 vial de Novoseven RT 2MG, el pronóstico para el mes de octubre sería de 1 vial de Novoseven RT 2MG.

9. Para el insumo Canister 1000 CC, se compara el resultado del modelo de pronóstico con el esquema de categorización de la demanda intermitente propuesto por Syntetos desarrollado en la tabla 18, en la que se debe hallar el intervalo promedio entre demanda y el coeficiente de variación cuadrático, para el caso analizado la categorización presenta un patrón de demanda suave y para este caso según el esquema de categorización se
Debe hacer un pronóstico con el modelo de Croston, coincide con lo que el análisis de pronóstico refleja en los resultados con un MAD de 9,89 y una desviación de 12,36 aproximadamente 12 unidad Canister 1000 CC, el pronóstico para el mes de octubre sería de unidad Canister 1000 CC.

<table>
<thead>
<tr>
<th>Material</th>
<th>Descripción</th>
<th>Und</th>
<th>Modelo de Revisión</th>
<th>Q</th>
<th>Inv. Seguridad</th>
<th>Q total</th>
<th>R</th>
<th>T</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000000484</td>
<td>MERONEM 1 G</td>
<td>AMP</td>
<td>Continuo</td>
<td>2.552</td>
<td>351</td>
<td>2.903</td>
<td>521</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000000154</td>
<td>GLEXANE 40MG/0.4ML</td>
<td>JG</td>
<td>Continuo</td>
<td>1.821</td>
<td>161</td>
<td>1.982</td>
<td>263</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000000691</td>
<td>SOLUCION SALINA NORMAL 0.99 % - 100 ML</td>
<td>B1</td>
<td>Continuo</td>
<td>31.564</td>
<td>1.389</td>
<td>32.932</td>
<td>3.473</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000000425</td>
<td>KIVIG 5G/50ML</td>
<td>VI</td>
<td>Continuo</td>
<td>73</td>
<td>34</td>
<td>107</td>
<td>39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000000651</td>
<td>SET PADMIN BOMBA INFUSION C.CLAVE</td>
<td>UN</td>
<td>Continuo</td>
<td>3.768</td>
<td>255</td>
<td>4.003</td>
<td>546</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000000114</td>
<td>CANCIDAS 50 MG/20 ML</td>
<td>AMP</td>
<td>Continuo</td>
<td>100</td>
<td>32</td>
<td>132</td>
<td>39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000000735</td>
<td>TAZODON 4.5 G</td>
<td>VI</td>
<td>Continuo</td>
<td>635</td>
<td>254</td>
<td>888</td>
<td>296</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000001473</td>
<td>NOVOSEVEN RT 2 MG</td>
<td>VI</td>
<td>Periódico</td>
<td>1</td>
<td>2</td>
<td>119</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000002564</td>
<td>CANISTER 1000CC ATS REF:M6275093</td>
<td>UN</td>
<td>Periódico</td>
<td>16</td>
<td>17</td>
<td>22</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000000169</td>
<td>CONTRATHION 0.5MG/100ML</td>
<td>VI</td>
<td>Periódico</td>
<td>13</td>
<td>42</td>
<td>25</td>
<td>79</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 25. Desarrollo de los modelos de gestión de inventario propuesto por Sipper para los productos con demanda continua e intermitente

Fuente: Los autores

En la tabla 25 se ilustra la aplicación de modelos de revisión de inventarios según lo establecido en la **Tabla 20.** Esquema de planeación de la demanda y de los inventarios de medicamentos y dispositivos médicos de uso en pacientes hospitalizados en una IPS de cuarto nivel, en ella se encuentran los productos que se han venido desarrollando a lo largo de este trabajo.

Para el desarrollo de estos modelos se necesitó la siguiente información facilitada por el departamento de suministros de la IPS de 4 nivel de complejidad:

- Costo de realizar un pedido (A): $7.102
- Costo de almacenar una unidad al mes (h): $1.602
- Lead Time (L): 2 días en promedio.

Además se necesitó de los datos de la desviación estándar del pronóstico (σ) y del valor pronóstico F_{T+K} descritos en la **Tabla 24.** Resumen consolidado de modelo de pronóstico para los 9 productos seleccionados.

En este trabajo se empleará una política 1 de nivel deservicio del 90%, valor F_{T+K} como Q (cantidad optima de pedido) debido a que la metodología de planeación en la IPS consiste en realizar los pronósticos para los requerimientos de productos.
en un periodo con tamaño de un mes, cada mes se están enviando órdenes de compra a los proveedores para su aprovisionamiento.

a) Para el medicamento MERONEM 1 GR se aplicó un modelo de revisión continuo QR donde el Q es el resultado del pronóstico \(F_{T+K} \) de 2.552 unidades, la desviación del pronóstico fue de 273,68 (\(\sigma \) MAD). Para el cálculo del Inventario de seguridad, se ofrece el nivel de servicio del 90% lo que nos arroja un Z de 1,28 este valor es multiplicado por la desviación del pronóstico lo que da como resultado un inventario de seguridad de 351 unidades, ahora estas 351 unidades son sumadas al valor Q lo que da como resultado un \(Q_{\text{total}} \) de 2.903 ampollas.

También se calculó el punto de reorden (\(R \)) donde interactúa la variable de lead time (\(L \)) expresada en fracción de mes la cual es multiplicada por el Q y se le suma el inventario de seguridad lo que da como resultado un punto de reorden o el punto del inventario donde se debe colocar una nueva orden es cuando se encuentre en 521 unidades.

b) Para el medicamento CLEXANE 40MG/0.4ML se aplicó un modelo de revisión continuo QR donde el Q es el resultado del pronóstico \(F_{T+K} \) de 1.821 unidades, la desviación del pronóstico fue de 125,73 (\(\sigma \) MSD). El inventario de seguridad calculado con un nivel de servicio del 90% da como resultado un inventario de seguridad de 161 unidades y este valor sumado al valor Q da como resultado un \(Q_{\text{total}} \) de 1.982 unidades.

El punto de reorden (\(R \)) dio como resultado un total de 283 unidades.

c) Para el medicamento SOLUCION SALINA 100ML se aplicó un modelo de revisión continuo QR donde el Q es el resultado del pronóstico \(F_{T+K} \) de 31.564 unidades, la desviación del pronóstico fue de 1.068,10 (\(\sigma \) MAD). El inventario de seguridad calculado con un nivel de servicio del 90% da como resultado un inventario de seguridad de 1.369 unidades y este valor sumado al valor Q da como resultado un \(Q_{\text{total}} \) de 32.932 unidades.

El punto de reorden (\(R \)) dio como resultado un total de 4.198 unidades.

d) Para el medicamento KIOVIG 5G/50 ML se aplicó un modelo de revisión continuo QR donde el Q es el resultado del pronóstico \(F_{T+K} \) de 73 unidades, la desviación del pronóstico fue de 26,36 (\(\sigma \) MAD). El inventario de seguridad calculado con un nivel de servicio del 90% da como resultado un inventario de seguridad de 34 unidades y este valor sumado al valor Q da como resultado un \(Q_{\text{total}} \) de 107 unidades.

El punto de reorden (\(R \)) dio como resultado un total de 39 unidades.

e) Para el producto SET P.ADMON BOMBA INFUSIONC.CLAVE se aplicó un modelo de revisión continuo QR donde el Q es el resultado del pronóstico \(F_{T+K} \) de 3.768 unidades, la desviación del pronóstico fue de 230,016 (\(\sigma \) MSD). El inventario de seguridad calculado con un nivel de servicio del 90%
da como resultado un inventario de seguridad de 295 unidades y este valor sumado al valor Q da como resultado un Qtotal de 4.063 unidades.
El punto de reorden (R) dio como resultado un total de 546 unidades.

f) Para el medicamento CANCIDAS 50MG/10 ML se aplicó un modelo de revisión continuo QR donde el Q es el resultado del pronóstico F_{T+K} de 100 unidades, la desviación del pronóstico fue de 25,17 (σ MSD). El inventario de seguridad calculado con un nivel de servicio del 90% da como resultado un inventario de seguridad de 32 unidades y este valor sumado al valor Q da como resultado un Qtotal de 132 unidades.
El punto de reorden (R) dio como resultado un total de 39 unidades.

g) Para el medicamento TAZOCIN 4,5G se aplicó un modelo de revisión continuo QR donde el Q es el resultado del pronóstico F_{T+K} de 635 unidades, la desviación del pronóstico fue de 1068,10 (σ MAD). El inventario de seguridad calculado con un nivel de servicio del 90% da como resultado un inventario de seguridad de 254 unidades y este valor sumado al valor Q da como resultado un Qtotal de 888 unidades.
El punto de reorden (R) dio como resultado un total de 296 unidades.

h) Para el medicamento NOVOSEVENG RT 2 MG se aplicó un modelo de revisión periódico ST donde el D es el resultado del pronóstico F_{T+K} de 1 unidad, la desviación del pronóstico fue de 1,26 (σ MSD). El inventario de seguridad calculado con un nivel de servicio del 90% da como resultado un inventario de seguridad de 2 unidades. En este tipo de revisión periódica se calcula el número de días entre revisiones (T) que no es más que el número de días que deben pasar entre una revisión del inventario y la otra revisión, para este producto nos arrojó un T de 119 días, ósea que se debe revisar los niveles de inventario casi cada 4 meses, el inventario meta (S) es la cantidad máxima de inventario a almacenar y para este producto dio como resultado 4 unidades.

i) Para el producto CANISTER 1000CC ATS se aplicó un modelo de revisión periódico ST donde el D es el resultado del pronóstico F_{T+K} de 16 unidades, la desviación del pronóstico fue de 9,89 (σ MAD). El inventario de seguridad calculado con un nivel de servicio del 90% da como resultado un inventario de seguridad de 17 unidades. El número de días entre revisiones (T) es de 22 días, el inventario meta (S) para este producto dio como resultado 32 unidades.

j) Debido a que el periodo entre revisiones (T) para el medicamento NOVOSEVENG RT 2 MG arrojó un valor tan alto (119 días) se decide incorporar otro producto que se clasifique como tipo A y categorice como intermitente para poder comparar el resultado, el producto escogido fue el CONTRATHION 0,2MG/100ML, a este medicamento se le aplicó un modelo de revisión periódico donde el Q es el resultado del pronóstico F_{T+K} de 13
unidades, la desviación del pronóstico fue de 37,10 (σ MSD). El inventario de seguridad calculado con un nivel de servicio del 90% da como resultado un inventario de seguridad de 42 unidades. El número de días entre revisiones (T) es de 25 días, el inventario meta (S) para este producto dio como resultado 79 unidades.
9. **EVALUAR Y COMPARAR LA PROPUESTA EXPUESTA FRENTE AL MODELO ACTUAL UTILIZADO EN LA IPS DE CUARTO NIVEL.**

Se desarrolla un cuadro comparativo con el análisis de los productos que han venido desarrollando a lo largo de este trabajo, se busca comparar los resultados del modelo propuesto respecto a los del modelo actual

![Tabla 26](image)

Tabla 26. Comparación de métodos.

Fuente: Los autores

Los resultados de la propuesta de planeación arrojan un error promedio de 479,05 unidades, respecto al modelo actual utilizado en la IPS donde arroja un error promedio de 558,91 unidades

El modelo propuesto se evaluó con una política de nivel de servicio del 90% debido a que los modelos de pronósticos utilizados se ajustaron a los patrones de comportamiento de la demanda de los productos, esto conlleva a que el inventario de seguridad calculado se reduzca en cada uno de los productos evaluados.

Se observa que el nivel de servicio ofrecido del 90% sigue siendo alto por la efectividad del pronóstico, por consiguiente se puede tomar la decisión de reducir dicho valor hasta el 65%, para corroborar dicha afirmación se ilustra en la siguiente tabla los resultados de la planeación del modelo propuesto con un nivel de servicio del 65%

88
Tabla 27. Comparación de política de nivel de servicio del 65% respecto a la propuesta actual

Fuente: Los autores

Los resultados de la propuesta de planeación con un nivel de servicio del 65% arrojan un error promedio de 319,32 unidades respecto al modelo actual utilizado en la IPS donde arroja un error promedio de 558,91 unidades.

Con el modelo continuo QR evita tener el agotado en los dos productos que no cumplieron con los requisitos de la planeación TAZOCIN 4,5 G y KIOVIG 5G/10ML siendo concluyente el aceptar la política de nivel de servicio del 65% que nos ayuda a mantener menos niveles de inventario por consiguiente la disminución del costo por administración.

Al evaluar la propuesta respecto al tiempo de proceso se evidencia que el tiempo de computo es mayor respecto al tiempo utilizado en la planeación actual debido a que los tiempos medidos en este trabajo en un producto llegaron a ser hasta de 10 minutos mientras el programa “solver” de excel procesa la información para encontrar el mejor modelo de pronóstico incluido el cálculo de la política de nivel de servicio de un modelo de revisión continua.

En cuanto al tiempo de análisis empleado en esta propuesta es menor respecto al tiempo que invierte el planeador de la IPS en la actualidad debido a la precisión de los modelos de pronósticos al ajustarse a los patrones del comportamiento de la demanda de los productos, mientras que el planeador debe revisar diariamente los
niveles de inventario y las desviaciones de la demanda reevaluando los niveles de inventario para evitar agotados.

En la actualidad se realiza revisiones periódicas de los niveles de inventarios cada 8 días para afrontar la variabilidad de la demanda que no se prevén en el modelo de pronóstico utilizado de promedio simple más el inventario de seguridad calculado del 15% adicional a la demanda para productos de alta rotación y del 5% de productos de baja rotación, la falta de estructuración de un modelo de planeación que mejor se ajuste a los patrones de comportamiento de la demanda del producto y el tratamiento generalizado que se le da en la IPS de cuarto nivel a los modelos de pronósticos sin ningún criterio de parametrización, están causando un incremento en el costo de oportunidad por el aumento en el número de órdenes de pedido, porque el modelo utilizado no se ajusta bien al comportamiento de la demanda de los productos y el modelo de inventario periódico utilizado por la IPS es puesto a prueba para identificar los faltantes de los productos que el modelo de promedio simple no pudo ajustarse.

Integración del trabajo de grado con el ERP institucional

La propuesta de la metodología de planeación de la demanda y de los inventarios se encuentra diseñada en su gran totalidad en hojas de cálculos denominadas plantillas, esta metodología es de fácil integración con el sistema ERP empleado en la clínica de cuarto nivel de complejidad, el planeador lo que debe realizar es la exportación de los datos de las demandas de los 1.599 productos de uso en pacientes hospitalizados para un periodo de 30 días (1 mes) desde el ERP institucional, estos datos exportados se incorporan a las plantillas creadas de clasificación, categorización, pronósticos y de modelos de inventarios.

El profesional de planeación estará en la libertad de analizar y procesar la información con la flexibilidad que ofrece esta herramienta de “office”. Tanto la clasificación como la categorización los modelos de pronósticos y de inventarios se encuentran formulados, además, la plantilla de modelos de pronósticos cuenta con la herramienta “solver” que le permitirá elegir la mejor opción de pronóstico (Q).

Después de haber procesado la información de las demandas, el profesional de planeación desde la hoja de cálculo puede integrar toda la información al módulo de planeación del ERP, este módulo es el encargado de remitir la información de los requerimientos de necesidades de productos al área de compras para el procesamiento de órdenes de compras a los distintos proveedores también llamados laboratorios farmacéuticos, el ERP es muy amigable con la información proveniente desde las hojas de cálculo de “office”.

90
Ilustración 15. Integración propuesta.

Fuente: Los autores
10. CONCLUSIONES

- La utilización de herramientas estadísticas básicas como la media, la desviación estándar y el coeficiente de variación son parte fundamental y la base para el entendimiento de los patrones de comportamiento de la demanda de un producto, no se podrá desarrollar un buen modelo de pronostico o una adecuada clasificación si no se maneja o no se conocen estos conceptos básicos.

- En la utilización de modelos de pronósticos cuantitativos y univariantes es importante y muy relevante la revisión y análisis de los indicadores de precisión como MAD, MCD y el MAPE, sobre todo cuando operamos y empleamos múltiples modelos de pronósticos, la revisión de estos resultados brinda un panorama de confianza al profesional de planeación al momento de tomar la decisión de cual modelo escoger. El adecuado conocimiento de los modelos que están siendo evaluados por el profesional de planeación es parte fundamental para la efectividad de los mismos.

- En el desarrollo de este trabajo se logró evidenciar que existe una opción de mejorar el nivel de servicio que se presta en los servicios farmacéuticos respecto a la disponibilidad de productos con un buen análisis de pronósticos, mejorando toda la cadena de suministros desde la misma compra de los productos, pasando por el proceso de almacenaje hasta la dispensación de productos a los servicios medico asistenciales.

- Los productos que se clasifiquen como tipo A deben ser examinados y monitoreados continua y rutinariamente por los profesionales de planeación, haciendo un análisis al árbol de decisión de pronóstico y de inventarios desarrollado en este trabajo y estar atentos a cualquier cambio repentino e inesperado de la demanda.

- Esta metodología basada en el análisis del árbol de decisión de pronóstico y de inventario pudo demostrar su aplicabilidad en los 1599 productos de uso en pacientes hospitalizados, esta misma metodología se puede hacer extensiva a los productos restantes de la IPS de cuarto nivel para la atención de pacientes en los servicios de cirugía, urgencias, imágenes diagnósticas, servicios ambulatorios y servicio de laboratorio.

- Para la administración de los inventarios en una clínica de 4 nivel de complejidad se hace necesario crear una clasificación adicional como lo es el de la clasificación por importancia, se recomienda el monitoreo constante
y la administración los productos incluidos en esta clase, no debe tenerse en cuenta solo el costo del producto ni su rotación para la clasificación ABC, se debe tener un capítulo aparte para aquellos productos que son la base de la atención a pacientes críticos, el desconocimiento de esta clase de productos o peor aún tratarlos como otro producto no urgente puede conllevar a poner en riesgo la vida de un paciente si algunos de estos productos presentan agotados.

- Se debe cambiar la idea que todos los productos se tratan, se manejan, se pronostican de la misma manera o con el mismo método de planeación, cada producto es un universo distinto, lo desarrollado en este trabajo abre un panorama de la realidad de las cualidades de estos productos, el tratar a todos los productos por igual (al menos con el mismo modelo de pronostico) pueden llevar al profesional de planeación a asumir altos riesgos como un agotado o un sobre “stock”.

- Esta metodología de planeación de la demanda y de los inventarios puede ser aplicada por diversas personas u organizaciones, fácilmente puede convertirse en un proceso sistematizado y estandarizado para la determinación de modelos de pronósticos y modelos de inventarios dentro de la empresa y disminuir la subjetividad que normalmente se emplean en este ramo de la planeación.
11. RECOMENDACIONES

- Los profesionales de planeación deben tener mucha precaución y prestar una total atención al momento de la planeación de un producto categorizado como intermitente, el incluir el dato 0 (cero) en la serie de tiempo puede llevarlo a pronosticar un dato por debajo a las demandas históricas si aplica modelos de pronostico como promedio, promedio móvil, exponencial simple y exponencial doble.

- Para disminuir notoriamente la incertidumbre presentada en la utilización de los pronósticos se hace necesario incorporar modelos de inventarios que apoyen y refuercen la gestión del profesional de planeación, el modelo de inventarios es el apoyo que tiene el modelo de pronostico ante los cambios significativos presentados por la demanda de medicamentos y dispositivos médicos en un entorno tan cambiante y variable como lo es la atención a pacientes y sobretodo en una institución de 4 nivel de complejidad.

- Si bien es cierto que existen modelos de pronósticos preestablecidos tanto en libros, internet y en ERPs se puede explorar en este campo adoptando modelos de pronósticos a las necesidades de cada empresa, se pudo evidenciar que la adaptación de mejoras a modelos existentes pueden mejorar la reducción del error sin tener que implicar un sobrecosto a las empresas por desarrollos sofisticados e inversiones en tecnologías.

- Se recomienda a los profesionales de planeación tener en cuenta las unidades de empaque de comercialización por parte de los laboratorios, si bien es cierto que se pronostica un valor, ese valor debe redondearse a la unidad de empaque que se comercializa.
12. REFERENCIAS BIBLIOGRáfICAS

Anexo 1. Matriz de marco lógico

<table>
<thead>
<tr>
<th>Recurso Narrativo</th>
<th>Indicadores Verificables Directamente</th>
<th>Medios de Verificación</th>
<th>Supuestos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fin de semáforo de approbation del SOP (procedimiento)</td>
<td>Nivel de aprobación</td>
<td>SAP</td>
<td>Inclusión de nuevos productos en el catálogo de la institución de nivel de atención</td>
</tr>
<tr>
<td>Proposición</td>
<td>Tiempo de entrega de los artículos</td>
<td>SAP</td>
<td>Falta de recursos humanos y tecnología para la identificación y la verificación de eventos adversos (Tiempo de entrega)</td>
</tr>
<tr>
<td>Componentes (producción)</td>
<td>% de cumplimiento del trabajo de grado</td>
<td>Documentación, diagrama de actividades</td>
<td>Desvueles para comparar medidas realizadas por el personal de nivel de atención, el mayor número de eventos adversos en los pacientes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Objetivos</th>
<th>Actividades</th>
<th>Indicadores Verificables Directamente</th>
<th>Medios de Verificación</th>
<th>Supuestos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definir y analizar la demanda de medicamentos y dispositivos</td>
<td>Recolección de datos</td>
<td>SAP</td>
<td>Medición con protocolo</td>
<td></td>
</tr>
<tr>
<td>Medicina en una EPS de nivel</td>
<td>Análisis</td>
<td>Excel</td>
<td>Excel con protocolo</td>
<td></td>
</tr>
<tr>
<td>Verificar los medicamentos y dispositivos</td>
<td>Análisis de equivalence</td>
<td>Excel</td>
<td>Excel con protocolo</td>
<td></td>
</tr>
<tr>
<td>Medios de uso en pacientes hospitalizados por una EPS de nivel</td>
<td>Análisis de importancia</td>
<td>Excel</td>
<td>Excel con protocolo</td>
<td></td>
</tr>
</tbody>
</table>

DIAGRAMA DE GANTT

- **CUMPLIMIENTO**
 - Excel con protocolo | Excel | Excel con protocolo | Excel con protocolo | Excel con protocolo | Excel con protocolo
Anexo 2. Cronograma