
	

	

ICESI UNIVERSITY

MASTER IN INFORMATION TECHNOLOGY AND
TELECOMUNICATIONS

SCHOOL OF ENGINEERING

QUALITY-DRIVEN SOFTWARE PRODUCT LINES

MEMBERS
DAVID DURÁN GIRALDO, S. Eng.

ADVISOR
HUGO ARBOLEDA, PhD.

	

	

Santiago de Cali, January 2015

2	

	

TABLE OF CONTENTS	

Abstract ... 5
1. Introduction ... 6
2. Background .. 7
2.1 Quality Attributes .. 7
2.2 Software Architecture ... 8
2.2.1 Tactics .. 9
2.2.2 Reference Architectures ... 10
2.3 Enterprise Software Applications .. 11
2.4 Model Driven Engineering ... 11
2.5 Software Product Line Engineering .. 13
2.6 Related Work ... 14
3. Case Study .. 17
4. Proposal .. 21
General Process for Product Derivation .. 21
4.1. Define the Software Product Line Scope .. 22
4.1.1. Functional Scope Definition .. 22
4.1.2. Quality Scope Definition ... 24
4.2. Determine Design Decisions of Product Line Members ... 29
4.2.1. Identify Enterprise Design Patterns to Promote Variants from the QAs Model 29
4.2.2. Reference Architecture Definition ... 31
4.3. Perform Code Generation ... 54
4.3.1. Constructing the Product Line Member Concrete Architecture 55
4.3.2. General Delegation Strategy ... 58
4.3.3. Concrete Generation Strategy .. 64
5. Technologies Involved in Product Line Members Derivation ... 76
5.1 Create a Model Based on the DMM ... 77
5.2 Select a Configuration From the QAs Variability Model .. 79
5.3 Execute Generation Workflow ... 81
6. Conclusions ... 81
7. Bibliography .. 82
Annex 1. Query Declaration example .. 89
Annex 11. Normal Time Execution Implementation ... 89
Annex 111. Medium Time Execution Implementation ... 89
Annex v1. High Sync Time Execution Implementation .. 90
Annex V. High Async Time Execution Implementation ... 91
	

3	

	

List of Figures

Figure 1. Use Cases of the SPL for Projects Management ... 19
Figure 2. Use case patterns of the SPL of enterprise applications ... 20
Figure 3. Use Cases of the SPL for Reference Management ... 21
Figure 4. General Process for product derivation ... 22
Figure 5. Domain Metamodel ... 23
Figure 6. Domain Model example .. 24
Figure 7. QAs Variability Model .. 25
Figure 8. Relationships between DMM and QAs Variability Model ... 26
Figure 9. Example of quality configuration impact on SPL for Project Management systems 29
Figure 10. Software Design Patterns to promote quality levels ... 31
Figure 11. Macroarchitecture: Components view .. 32
Figure 12. Microarchitecture of a Presentation Component .. 33
Figure 13. General Microarchitecture of Domain Components ... 35
Figure 14. Normal Time Execution Concrete Design .. 36
Figure 15. ListAll projects use case sequence diagram (Normal Time Execution) 36
Figure 16. Medium Time Execution Abstract Design .. 37
Figure 17. Medium Time Execution Concrete Design ... 38
Figure 18. ListAll projects use case sequence diagram (Medium Time Execution) 38
Figure 19. High Sync Time Execution Abstract Design .. 39
Figure 20. High Sync Time Execution Concrete Design ... 40
Figure 21. ListAll projects use case sequence diagram (High Sync Time Execution) 40
Figure 22. High Async Time Execution Abstract Design .. 41
Figure 23. High Async Time Execution Concrete Design ... 42
Figure 24. ListAll projects use case sequence diagram (High Async Time Execution) 42
Figure 25. Security-Confidentiality Manager Concrete Design ... 43
Figure 26. Concrete Interactions with Confidentiality Component ... 44
Figure 27. Creation of a project considering data encryption .. 44
Figure 28. Retrieving all projects considering data decryption .. 45
Figure 29. Security-Integrity Abstract Design ... 46
Figure 30. Security-Integrity Concrete Design .. 46
Figure 31. Authentication process considering Integrity (Account Lockout) 47
Figure 32. Role-Based Access Control Pattern .. 47
Figure 33. Security-Authenticity Abstract Design ... 48
Figure 34. Security-Authenticity Concrete Design .. 49
Figure 35. Authorization sequence diagram ... 50
Figure 36. Case Study Macroarchitecture - Users .. 50
Figure 37. Case Study Macroarchitecture - Risks .. 51
Figure 38. Case Study Macroarchitecture - Projects .. 51
Figure 39. Case Study Microarchitecture - Users Component ... 52
Figure 40. Case Study Microarchitecture - Risks Component ... 52
Figure 41. Case Study Microarchitecture - Projects Component ... 53
Figure 42. Case Study Microarchitecture - Authenticity Component .. 53
Figure 43. Case Study Microarchitecture - Transfer Objects ... 54
Figure 44. Case Study Microarchitecture ... 55
Figure 45. Modifications to our DMM to handle UML transformation ... 56
Figure 46. ATL transformation (code fragment) .. 57
Figure 47. Executing the ATL transformation ... 58
Figure 48. Xtend2 Template example .. 58

4	

	

Figure 49. Template groups .. 59
Figure 50. Java class sections ... 60
Figure 51. Contribution interface ... 60
Figure 52. Contribution .. 61
Figure 53. Concretization example of Contribution interface .. 62
Figure 54. Delegation strategy ... 63
Figure 55. Conflict resulted from two or more contributions to a same template section 63
Figure 56. Delegation strategy based on contributions ordering .. 64
Figure 57. Templates involved in our generation process and their grouping 65
Figure 58. Ids for each quality level concretization ... 69
Figure 59. Example of using extendContribution function .. 69
Figure 60. Identifications for each contribution section ... 70
Figure 61. Contributions to Project's domain component (Data Encrypted and Normal Time

Execution) .. 71
Figure 62. Mixed Contributions to Project's domain component (Data Encrypted and Normal

Time Execution) .. 71
Figure 63. Example of delegating contributions among Templates and Contributors 72
Figure 64. Resulting contributions when an attribute is selected and when it isn’t 73
Figure 65. Generation Workflow ... 73
Figure 66. Using our API to enable quality handling ... 74
Figure 67. DomainCodeGenerator implementation ... 75
Figure 68. Product Derivation Process ... 77
Figure 69. Generation Plugin content ... 78
Figure 70. Using our DMM to create Domain Models .. 78
Figure 71. Domain Model of our Case Study ... 79
Figure 72. Properties of Domain Model elements .. 79
Figure 73. QAs model using S.P.L.O.T. .. 80
Figure 74. QAs model Configuration ... 80
Figure 75. Generation Workflow Execution .. 81

5	

	

ABSTRACT

In software product line engineering, the customers mostly concentrate on the
functionalities of the target product during product configuration. The quality attributes
of a target product, such as security and performance, are often assessed until the final
product is generated. However, it might be very costly to fix the problem if it is found
that the generated product cannot satisfy the customers’ quality requirements. Several
approaches have been proposed to deal with this issue, focusing on the assessment of a
quality attribute of a product configuration to measure the impact on a quality attribute
made by the set of functional variable features selected in a configuration. Nevertheless,
these approaches are only interested in characterizing the relationships among quality
attributes and product functionalities to provide useful information about predicting the
quality of the target product, relying on the previous existence of the software
components that provide such measures and values. Our approach provides a SPL that
uses model-driven techniques to automate derivation of product line members,
considering promotion of quality attributes during this process by means of software
enterprise patterns. In concrete we provide the following contributions: i) a domain
metamodel that enables defining functional scope of product line members, ii) a quality
attributes variability model to handle definition of quality scope of product line members,
iii) a Reference Architecture (characterization of software enterprise design patterns from
the perspective of the quality attributes they promote or inhibit) to construct product line
members that exposes explicit variation points related to quality attributes and their
relationships with functional features, iv) and tool support based on a generation engine
to automatically construct product line members, following the Reference Architecture
constraints. An illustrative example based on a Project Management software product line
is presented to demonstrate how the proposed approach works.

6	

	

1. INTRODUCTION
Today software engineers are faced with a demand for complex and powerful software
systems, which must be developed in short, time. To solve this problem, software reuse
was emerging as a principal key to a successful software development because of its
potential to reduce the time to market, increase quality and reduce costs [1], as it consists
in creating and in assembling systems with existing components. Software Product Line
Engineering (SPLE) is an expanding approach, which aims at developing a set of
software systems that share common features and satisfy the requirements of a specific
domain [2]. While having much in common, products derived from a SPL still differ in
certain requirements, design decisions, and implementation details. The variability stems
from many sources such as customer’s specific needs, mutability of the environment,
system maintenance and evolution, and so on. Product Lines are gaining importance in
the software development field as they reduce development time, effort, cost and
complexity and increase quality of products [3].

One of the challenges in today’s both traditional software engineering and SPLE
approaches is to deliver high-quality software on time to customers [4]. Successful
companies must have a focus on customer satisfaction and software quality to ensure that
the desired quality is built into the software product and that customers remain loyal to
the company. This is especially true for the IT industry where customers have ever-
increasing expectations of software quality. Software quality has become a major concern
of software organizations [5]. A lot of research thus has been done to refine the concept
of quality into a number of quality attributes (QAs), also known as quality characteristics,
quality factors or non-functional requirements (NFRs), (see e.g., [6] [7] [8] [9]).

QAs of the products, such as performance, and security are usually handled until the final
product is produced and tested in the system-testing phase [10]. Different members of the
software product line may require different levels of quality attributes. For example, one
product may require a very high security whereas in another product security is not that
important. If it is found that the quality attributes of the product fail to meet the
customers’ requirements in a later product development stage, it is costly to fix the
problems. Therefore, the QAs of a target product (level of accomplishment for each QA)
should be assessed as early as possible in the product development process.

Although there are studies that mention the existence and influence of QAs on the
domain analysis and design (e.g., [11] [12] [13]), they do not consider their influence on
SPL assets implementation. Zhang et al. [14] propose a Bayesian Belief Network (BBN)
based approach to explicitly modeling the impact of variants (especially design decisions)
on system quality attributes. Zhang G. [15] proposes an Analytic Hierarchical Process
(AHP) based approach to estimate the relative importance of each functional variable
feature on a quality attribute. Bartholdt et al. [16] presents an integrated tool-supported
approach that considers both qualitative and quantitative quality attributes without
imposing hierarchical structural constraints. Even though these works explicitly consider
QAs variations and their relationships with functional features, they focus on
characterizing such relationships to provide useful information about predicting the
quality of the target product, relying on the previous existence of the components that

7	

	

provide such measures and values. Thus, the design decisions and implementation details
needed to construct these components in order to promote the configured quality levels
are not considered.

Such condition exposes limitations on current SPL approaches regarding strategies that
systematically make use of good design practices to promote quality attributes in the core
assets of the line, i.e. software components. More particularly, although there are several
repositories that encompass the knowledge regarding how to design concrete
architectures and components of a given application domain, taking into account quality
concerns, i.e. Reference Architectures, current SPL approaches do not use a systematic
mechanism to take advantage of this consolidated expertise to modify software
component’s design structure and behavior, in order to promote different levels of
quality.

Our contribution in this work is to develop a strategy and tool support that, making use of
software design good practices, allows a product line engineer to automatically derive
products that are configured based on a set of functional and quality constraints.
Specifically, we provide the following contributions: i) a domain metamodel that enables
defining functional scope of product line members, ii) a quality attributes variability
model to handle definition of quality scope of product line members, iii) a Reference
Architecture (characterization of software enterprise design patterns from the perspective
of the quality attributes they promote or inhibit) to construct product line members that
exposes explicit variation points related to quality attributes and their relationships with
functional features, iv) and tool support based on a generation engine to automatically
construct product line members, following the Reference Architecture constraints. An
illustrative example based on a Project Management software product line is presented to
demonstrate how the proposed approach works.	

2. BACKGROUND
2.1 QUALITY ATTRIBUTES

Quality is the degree to which a system meets the Non-Functional Requirements (NFRs)
in the context of the required functionality. Quality Attributes (QAs) are crosscutting-
concerns known as nonfunctional properties of a software system such as performance,
safety, and security [17], [18]. Achieving QAs must be considered throughout the
development process of a software system. According to Bass et al. [19], there are three
problems related to QAs: the definitions provided for an attribute are non-operational
(lack of preciseness), there is no clarity on which quality a particular aspect belongs to
(overlapping attribute concerns) and each attribute community has developed its own
vocabulary. A solution to the first two of these problems is to use quality attribute
scenarios [20]. A solution to the third problem is to use a standard model that specifies
each attribute underlying concerns, like ISO 25000 series [21].

A quality attribute scenario (QAS) serves as a mean of characterizing quality attributes,
and consists of six parts [22]: i) the source of stimulus, which is the entity that generates
the stimulus, ii) the stimulus, which represents an internal or external incentive that

8	

	

affects a part of the system and acts as a trigger e.g. a user invokes a function, iii) the
environment, that represent the conditions under which the stimulus occurs, e.g. at
runtime, iv) the artifact that identifies the system or a part of it that is stimulated, v) the
response, which is the action that’s undertaken when the stimulus arises, and vi) the
response measure, that provides numeric indicators so the quality attribute can be tested.
An example of a QAS can be: An end user requests the system to retrieve data from a
particular table stored in a local database. Such retrieval must take 4 seconds tops to
display the information to the user.

2.2 SOFTWARE ARCHITECTURE

Software Architecture (SA) can be defined as the set of structures needed to reason about
the software system, which comprises the software elements, the relations between them,
and the properties of both elements and relations [23]. The importance of SA is that it
serves as a blueprint that details the system that is going to be developed [24]. It must
provide an alignment between user, business and system goals [25]. One of the most
relevant contributions of SA is its role as primary carrier of system qualities such as
performance, modifiability and security [22], [24]. It involves a series of decisions based
on a wide range of factors that have considerable impact on QAs that decide the overall
success of applications.

Authors like Hollingsworth [26] and Vogel et al. [27] have found that to adequately
reason about specific properties, the software architecture field must be divided into
micro and macro architectural levels. Macro-architecture deals with top-level/high-level
design issues, for instance, the spectrum to which architecturally relevant elements are
assigned. It covers aspects such as requirements, decisions and structures at a high level
of abstraction, for example, decisions with regard to important system interfaces,
identification of system’s main building blocks and the relationships among them [27].
While macro-architecture deals with system’s overall structure [28], such as viewpoints,
architectural styles and patterns, micro-architecture focuses on detailed structure and
behavior of system’s components.

Alur et al. [29] highlight that micro-architectures are building blocks upon which we
build applications and systems, and that they can be seen as a prescriptive solution that
uses different design patterns to solve larger problems concerning macro-architecture
decisions. Micro-architecture is also known as software component engineering [26],
which is closely related to the notion of reuse [30]. Some of the advantages of this
particular area are the focus on component’s interoperability and the assurance of
component’s promoted properties through proper design decisions. Such decisions focus
on promoting quality attributes on each developed component, which provides a well
founded and proven base to deal with system’s composition at macro-architectural levels,
fomenting the construction of applications under a quality approach.

Enterprise Software Applications (see section 2.3) usually are developed using proven
architectural styles, such as the three-layer based architecture [29], which we are going to
use as the fundamental structure to derive the products of our line. An architectural style
defines a set of types of elements, types of relationships and constraints between them

9	

	

[22]. Software architects designing a solution using a style, must design the software
using the style-specific types of elements and relationships, and respect the corresponding
constraints.

The Three-layer architectural style [29] [31] defines three layers: the presentation, logic
and data-access layers. An application designed using this style includes these three
layers. In addition, each layer comprises components with layer-specific types and
responsibilities: the presentation layer comprises GUI components; the logic layer
includes the components that implement the logic behind the business transactions; and
the data access layer includes data-access components that store and retrieve data from
files, servers and databases.	

2.2.1 TACTICS

Knowing SA’s role as quality insurer, it is important to rely on mechanisms that aim to
guarantee software quality on both macro and micro levels. Such mechanisms rely on
design decisions and are known as tactics. Clements et al. [32] and Rozanski et al. [33]
determine that a tactic is a widely used architectural approach that has proven to be useful
to achieve a particular quality. For example, “rollback” is a tactic to recover from a
failure aiming to increase a system’s availability, or “concurrency” is a tactic to manage
resource access aiming to improve performance. Among these tactics, Design Patterns
[34] are a well-know mechanism to achieve QAs at a micro level, i.e. component’s
internal structure.

According to Gamma et al. [34], a design pattern is a recurrent situation that must contain
four essential elements: a pattern name, the problem that determines when to apply the
pattern, the solution that states how the elements provided by the pattern should interact
and function to solve the problem, and the consequences that take place when the pattern
is applied, such as results and trade-offs. Design patterns catalogs must contain a set of
design patterns that are useful in a particular context. Every pattern contained in the
patterns catalog must contain at least these four elements to describe its use. There are
many patterns catalogs in the literature. Steel et al. [35] and Hafiz M. [36] provide
catalogs that focus on improving applications security. Fowler M. [31] provides a list of
design patterns used in ESAs.

Bien’s book [37] provides a set of design patterns that result as an evolution from
previous patterns specified in [29]. These patterns are intended to be use in the context of
ESA developed using Java Enterprise Edition-JEE [38]. The book maintains tiers division
provided in [29] and elaborates on the details and main changes of deprecated patterns
and newly ones. Each pattern contains the four elements described by Gamma et. al, plus
a section that highlights non-functional attributes that are affected by them. It also
proposes two configurations to properly use the patterns catalog depending on application
objectives: service oriented and domain-driven architectures. Each configuration
summarizes a pattern language that declares some constraints to include or exclude
different patterns. Bien’s 2012 book [39] offers and update to his earlier catalog in terms
of new discovered patterns and modifications to some previous patterns intends and uses.
It provides an extensive set of enterprise patterns that meet the following characteristics:

10	

	

i) are currently used in real enterprise applications, ii) provide the basic elements listed
by Gamma et. al., iii) each pattern briefly describes how it affects particular quality
attributes and iv) the catalog is focused to be used in enterprise applications, which is our
context of work.

Adam Bien is a well-known java developer and architect that have participated in the
edition of several books related to Java technology [40]. He holds numerous titles that
certificate his expertise in using Java for enterprise IT projects, between them Java
Champion [41] and Java Developer of the year 2010 [42]. His contributions vary from
the organization of Java related workshops [43], two books about the use of Java in the
development of enterprise applications (the referred above among them), a constantly
updated blog about Java topics and implementation issues of his proposals [44], and a TV
channel addressing the same concerns [45]. Bien also provides a repository 1 that
consolidates a collection of implemented samples and reusable templates, which
demonstrates patterns, approaches and architectural ideas for the Java EE 6 platform.

Besides design patterns, there are several other tactics that attempt to ensure quality
attributes in enterprise applications. For instance, Kalinsky D. [46] list a set of design
patterns for high availability that can be applied to system’s infrastructure, like hardware
redundancy. Microsoft [47] provides server-clustering pattern to address performance,
scalability and availability of enterprise applications. Specifically, load-balanced cluster
allows distribution of network traffic between several physical servers to improve
application’s performance, while fail over cluster proposes hardware redundancy to deal
with server damage and unavailability.

2.2.2 REFERENCE ARCHITECTURES

RAs go one step further in reuse of best practices in architectural design [48], [32].
Nakagawa et al. [49] define a RA as: “an architecture that encompasses the knowledge
regarding how to design concrete architectures of systems of a given application domain;
therefore, it must address the business rules, architectural styles (that address quality
attributes in the reference architecture), best practices of software development (for
instance, architectural decisions, domain constraints, legislation, regulations, and
standards), and the software elements that support the development of systems for that
domain. All of these must be supported by a unified, unambiguous, and widely
understood domain terminology”. RAs importance is that they provide consolidated
information about a particular domain to serve as guideline to build specific products
taking into account best practices and quality constraints.

RAs become a main asset to develop software applications, because they provide
consolidated information of the most relevant components of a particular domain. A RA
provides structure, identification and relationships of the main components of a particular
software architecture that can be reused to build a concrete software application, serving
as support at a macro architectural level. This information may be expressed in terms of
architectural styles or patterns using a standard modeling language like UML. RAs must

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

1	
 https://kenai.com/projects/javaee-­‐patterns	

11	

	

also contain information related to quality attributes, that is, tactics. Such information
may vary from infrastructural decisions to software design decisions. Software decisions
include definition of guidelines, standards and templates to address common problems of
the related domain. The use of design patterns to describe component’s internal
composition and behavior (micro-architecture) is also an important contribution that RAs
provide, as they consolidate relevant information to develop components aligned to
inherent domain quality attributes.

As stated before, there are several elements that compose a RA, so it is important to have
means to adequately represent a RA, because they are required to be understandable for
wide variety of stakeholders (such as customers, product managers, project managers,
and engineers). Nakagawa [50] summarizes several works that have focused on the
properly representation/description of RA; these methods include semi-formal techniques
of UML (Unified Modeling Language) [51], and ADL (Architectural Descriptions
Languages) and their extensions [52].

2.3 ENTERPRISE SOFTWARE APPLICATIONS
The context or domain of this work is focused on Enterprise Software Applications
(ESAs). These types of applications are intended to satisfy the needs of entire
organizations. In [31], Fowler M. identifies that an ESA usually involves persistent data,
concurrent user access to the information and several user interfaces to handle the big
amount of data requested. This type of software requires abstraction and modeling of how
organizations work; besides, it requires development tools that support such model in
order to build unique appropriate applications that match organization’s needs. ESAs
must accomplish a certain set of characteristics, for instance, [53] defines ESAs as
network applications that must be large-scale, multi-tiered, scalable, reliable, and secure.
These non-functional characteristics ensure ESAs quality. Bass et al. [22] agree that this
type of applications must be oriented to a web-based environment (network apps) and
that they must fulfill a minimum set of quality attribute requirements to ensure quality,
between them scalability, availability/reliability, security, usability and performance.
Sections below describe the domain metamodel that we use to limit the scope of
particular ESAs that we are interested in.

There are standards that emphasize on providing an environment that ensures all of these
characteristics, allowing developers to focus on relevant business information, such as its
logic and functionality. Java Enterprise Edition [38] is one of these solutions. It provides
latest technologies integration and support to maximize web based enterprise applications
development and management. There are other solutions like JBoss Application Server
[54] that also provides integrated tools to ease enterprise applications management. The
selection of one these solutions depends on organization’s specific needs and technical
knowledge.

2.4 MODEL DRIVEN ENGINEERING

As technology evolves, several platforms for software development have been developed.
These platforms are usually heterogeneous, that is, despite offering similar interfaces,
each one has its own operational standard and a specific set of base components. This

12	

	

implies that it is mandatory to know the characteristics of the selected platform prior the
software development process, in order to use the basic functionality it provides. Hence,
once the new application components are built, this software will only run on the selected
platform and won’t be compatible with other technologies.

As a concrete example of the above situation, we find Java and .NET platforms, which
provide a set of basic components that facilitate application development. These basic
components provide functions or tasks that simplify software development. However,
once an application is built using the basic components of any of the two platforms, it can
only be executed on the selected platform. This implies that an application developed
under Java platform cannot run on .NET platform and vice versa.

Model Driven Software Development (MDSD) represents a new approach in software
engineering that deals with the inability of third generation languages to manage
heterogeneous platforms, plus it provides effective expression of domain concepts [55].
MDSD does not attempt to solve the problem of heterogeneity by unifying platforms. Its
goal is to support software development independently of the technology used. Thus,
decisions of platform selection and implementation details are postponed to final stages
of the development process. In order to achieve his goal, MDSD raises the level of
abstraction, using models as first-class elements, i.e. assets that can be processed by a
computer or by a tool. This is the main feature that differentiates MDSD from traditional
approaches of software development where models are used exclusively for
documentation purposes.

Models deal with a high degree of abstraction, representing the concepts that are relevant
to a particular domain. This enables focusing in the representation of the problem rather
than its implementation, reducing software development complexity through the
separation of different concerns in multiple views. Thus, MDSD can express both the
problem and the solution across different models, each one representing a specific point
of view, thereby reducing the complexity of developing and managing heterogeneous
platforms, since the software can be expressed in terms of domain concepts.

In order to increase the level of abstraction, each model must be defined in terms of a
specific language. In general, these languages are defined in terms of domain particular
concepts without considering implementation details. The definition of a language
involves abstracting its domain concepts, a proper notation and rules that must be met.
Thus, a model is constructed in terms of the language of its metamodel, implying that the
metamodel is responsible for abstracting these domain concepts and rules. In conclusion,
metamodels are models that represent concepts of a domain and the relationships between
these concepts. The relationship between a model and the metamodel is known as a
conformity relationship [56]. Thus, it is said that a model conforms to a metamodel if it
meets the description and restrictions of the metamodel.

As explained above, MDSD uses models as first-class elements, i.e. assets that can be
processed by a computer or a tool. In order to process these models, it is necessary to use
languages that enable specifying the required inputs; the operations performed and the

13	

	

output elements. The specification of these operations is known as model transformation.
Transformations between models are composed of transformation rules, which are
defined in terms of the domain concepts (metamodel) involved in the transformation [57].
Each transformation rule defines a set of inputs, a set of operations and a set of output
elements. Both inputs and outputs may be specified in source and target models of the
transformation. There are different kinds of transformations classified by the nature of
their source and target domains. Most common transformations are: model-to-model and
model-to-text. Former implies turning a source domain model into a target domain
model, latter enables using a domain model to create text. This type of transformation is
generally used to generate source code and configuration files.

2.5 SOFTWARE PRODUCT LINE ENGINEERING

Product line engineering is a paradigm that places component production and the reuse
strategy at the center of the development process [58], [59], intended to allow the
development of several applications that share common aspects. SPLE put into practice
this paradigm in software context. This discipline is divided in two main phases, named
domain engineering and application engineering [60]. Former phase identifies domain
applications, distinguish between their similarities and variations and structures this
information. Latest phase consist of the efficient production of the applications defined in
the first stage, using a production plan as a guideline to successfully configure each
application.

Domain engineering phase deals with identifying and documenting SPL scope, which is
known as domain, plus it must deal with variability management. The first activity is the
identification of the commonalities of the SPL domain, which are the characteristics that
will be shared by all the products of the product line. This stage also has to deal with the
identification of variation points, which are the specific points of the SPL domain that
allow derived product’s customization. Each variation point requires defining all its
possible variants. A variant is a characteristic that isn’t necessary contained in every
derived product of the line. An asset known as the variability model consolidates
identified characteristics and defines their relationships. There are several notations to
define the variability model; between them, [61], [62] and [63] propose feature models
(FMs); [64] suggest enriched UML diagrams; [65] add model-engineering notations; [66]
propose a variability language; [60] presents Orthogonal Variability Model (OVM).

Once the variability model is defined, a specification shared by all domain products must
be set. The product line architecture (PLA) is an asset preplanned to support their
common basis, variations and architectural requirements. It must capture the entire set of
features of the SPL, its variability model, and must define assembly rules and constraints
(using a formal notation) that allow the generation of particular products. According to
Clements P. [59] and Bass et al. [19] the PLA is the original artifact of the reusable
artifact kernel, and thus must be a main development objective.

There is some controversy on the subject of differences between the concepts of RA and
PLA. Most authors, including [67], [68] see no real differences between the two, but
others see differences in the abstraction level and domain type. For instance, Nakagawa

14	

	

et al. [69] establishes a relationship between this two concepts: while reference
architectures deal with the range of knowledge of an application domain, Product Line
Architectures (PLA) are more specialized, focusing sometimes on a specific subset of
software systems of a domain and providing standardized solutions for a smaller family
of systems. This means that a RA can be specialized into many PLAs. Angelov et al. [70]
agree with the previous definition stating that product line architectures are less abstract
than RA, but more abstract than concrete architectures.

Variability management must also allow construction of product line members.
Approaches like [67] state the use of decision models [71], [72], [73], [74] to capture
external variability and define the concrete resolution during the derivation of products
[72]. Each decision maps each variation point defined in a variability model with its
possible resolutions (i.e. components), in order to define how core assets must be adapted
and assembled, aiming to realize corresponding related variation.

Application engineering phase focuses on configuration and derivation of product line
members; according to the main assets produced in domain engineering stage and a
production plan [67]. The configuration consists of selecting a consistent and full set of
variants from the variability model. Product derivation deals with the manual or
automatic activities that constructs the final product from a functional configuration,
reusable elements, and in accordance with the production plan. There are several
approaches that focus on the automation of product creation from decision and resolution
models. Dhungana et al. suggest DOPLER, an approach entirely based on decision
models for deriving the products in a line [75]. The AMPLE project [76], with the
TENTE approach, has proposed a quasi-automatic derivation of the product line from the
features model and a features-oriented language. Lastly, model-oriented approaches such
as [77] and [78] consider methods for expressing the use of reusable elements in the
realization of a selection of features.

Voelter et al. highlight in [3] that it is possible to build product lines of product line
architectures. They refer to this property as Meta-Product Lines. This means that the
domain models that result from a particular domain metamodel are used as variability
models to configure independent SPLs i.e. each domain model enables configuration of
several products by selecting/deselecting domain concepts that are wanted on a target
product; instead of being used as particular products i.e. each domain model is a target
product. In this work we provide a domain metamodel that is used as a Meta-Product
Line for constructing ESAs, within the scope of domain concepts and relationships
defined in it.

2.6 RELATED WORK

Due to there is a wide range of QAs that can be considered in SPL development, i.e.
ISO’s 25000 classification, addressing all of them might end up in several interrelated
constraints and conditions, making the derivation of products a difficult and error-prone
task to achieve. Thus, it is important to identify the most frequent QAs that the
community is interested in. Works like [15] [14] [79] identify performance, usability,
security and cost as the quality attributes that are of frequent interest to final users.

15	

	

After identifying these QAs, a proper way to model them (contemplating their variations)
is needed. The idea of variations in quality is considered in different works [11] [12] [13]
and there are also some approaches that address variability modeling taking into account
quality attribute variability. However, “there is a lack of thorough understanding of
existing approaches to be able to integrate quality attribute variability as a part of the
systematic variability management of software product lines” as proposed by [11].

A survey presented in [80] summarizes several existing methods that address quality
attribute variability specification and managing. Approaches like Goal-based model [81]
propose to treat and model non-functional requirements or QAs as soft goals, so they
represent conditions or criteria that the system should meet. Benavides et al [82] [83]
propose to extend feature model to deal with extra-functional features. They propose a
notation extending feature models with attributes, characteristics of a feature that can be
measured such as availability, cost, latency, bandwidth and relations among attributes.
Work in [15] uses feature models to represent QAs, where the leaf nodes of such quality
tree determine the quality that the SPL will assess, because they have sufficient semantics
for the impact-relationships between quality attributes and functional variable features
analysis. This decision is due to quality attributes that are represented at high levels in a
feature model are often vague and inherently hard to measure, such as performance or
security.

Work presented in [15] highlights the importance of dealing with quality issues in early
stages of the product development process, such as considering impact of quality
constraints to the final products from the start. Besides gathering several approaches for
specifying variation in quality attributes in SPL, Etxeberria et al. [80] emphasize on the
techniques that they use to relate functional variability with quality variability. Goal-
based models use correlations to represent the links among functional and soft goals.
Each correlation links is marked with an influence qualitative label (++, --) that is
converted to a qualitative value to be used in a later quality analysis. Zhang et al. [14]
proposed a Bayesian Belief Network (BBN) to capture the impact of functional variants
on quality attributes. They link functional requirements to quality attributes using noted
definitions that are relative to each domain, i.e. “high performance” definition might
mean a response time lower than 0.5 seconds to one domain and less than 1 seconds to
another. After all links are defined, conditional probability is used to quantify the
conceptual relationships. Notice that these models assume that the quality levels are
affected by the functionalities selected, and not in the opposite direction.

Several works consider QAs in SPL development. For instance, Huerta et al. [84] provide
support, applying model-driven engineering principles, to the identification and
representation of non-functional requirements (NFRs) in SPL development, also offering
a mechanism for the validation of their fulfillment through the association of measures,
thresholds and OCL constraints to each NFR. They provide a meta-model that allows
definition of NFRs based on ISO 25000’s [21] quality model to define measures for a
specific quality attribute, besides the impact that such attribute might have on features or
core assets (i.e. positive/negative). Their model also allows definition of variability for a

16	

	

particular QA, i.e., performance may have different acceptance thresholds depending on
system’s configuration. They determine that a NFR may be related to many QAs, for
instance, reliability can be broken down into two QAs: availability and fault tolerance.
Each NFR must define a restriction that determines its achievement; such restriction is
defined using OCL. Once NFRs are defined and related, an automatic OCL validation is
performed taking as input this configuration model to check whether the different
constraints are satisfied or not. Such validation concludes whether a product/artifact
promotes or inhibits the associated NFRs. This work focuses on providing means to
adequately relate and measure NFRs impact on features/artifacts; thus, they rely on the
specification of such measures to operate. They do not care about component’s design
decisions to determine how they affect QAs, nor provide mechanisms to automate their
generation.

Gürses expresses NFRs in [85] through qualitative goals. This approach allows
performing trade-off selections among different types of basic NFR-goals, returning the
configuration that fulfills those goals. The modeling of NFRs is done using an extended
feature model that is annotated with quality information. Sagardui et al. defined a method
for capturing the quality variability and the relationships among functional variability and
quality aspects through an extended feature model that allows the expression of quality
attributes, their variability and the relationships (impacts) that features or feature groups
have on the quality attributes [86]. Both proposal focuses on modeling variability of
quality attributes and relating such variability to functional characteristics of the SPL.
They also provide means to evaluate accomplishment and trade-offs between quality
attributes for a particular configuration of the SPL. However, their proposals only
introduce quality considerations to SPLE, hence they do not focus on how such identified
and related QAs are going to be fulfilled, i.e. using design patterns for their construction.

Work in [14] proposes a Bayesian Belief Network based approach to address the problem
of analysis and prediction of quality attributes for a product line. They use BBN to
capture the design knowledge and experiences of domain experts. Such approach enables
graphically modeling the impact of design decisions on quality attributes, by using nodes
and relationships among them. After capturing the qualitative relationships among
variables (denoted by nodes), a quantification process takes place, where a conditional
probability is assigned to each node in the BBN. Having quantified the graphical model, a
quantitative analysis can be performed (e.g., predicting the quality of the target system).
The proposal in [15] uses an Analytic Hierarchical Process (AHP) based approach to
estimate the relative importance of each functionality on a quality attribute. They
conclude that based on the relative importance value of each functionality on a quality
attribute, the level of quality attributes of a product configuration in software product
lines can be assessed. To do so, they identify the relevant functionalities that impact a
quality attribute; they estimate the relative importance value of functionality identified on
a quality attribute, they calculate an importance value for a product configuration on a
quality attribute (e.g. 1 for Equal Importance: Two elements contribute equally to the
objective, and 7 for Very Strong Importance: One element is favored very strongly over
another), and they define a representation scheme for quality attributes in feature models
that enables measuring quality levels for a particular product. [16] provides an integrated

17	

	

tool-supported approach with both qualitative and quantitative quality attributes that are
explicitly considered in the product derivation process without imposing structural
constraints such as a hierarchical structure. This tool enables configuring a product
relating each functionality to the quality attributes it promotes or inhibits. These
relationships are quantified in order to enable calculating the resulting value of a quality
attribute for a particular product, to determine weather the product satisfies the quality
needs of the customer. Even though these works explicitly consider QAs variations and
their relationships with functional features, they focus on characterizing such
relationships to provide useful information about predicting the quality of the target
product, relying on the previous existence of the components that provide such measures
and values. Thus, the design decisions and implementation details needed to construct
these components in order to promote the configured quality levels are not considered.

Dealing with code generation, there are several technologies to manage templates, e.g.,
Xtend22, Acceleo3. Former is designed as a successor of Xpand. However, it is not
tailored specifically to code generation but as a general-purpose language that is nicely
usable for code generation as well. The use of Xtend2 demands providing an engine
(source code) that drives the generation, although it is possible to use Modeling
Workflow Engine for this purpose. Latter is more tailored for simple code generation. Its
syntax is based on an OMG specification for code generation, and provides a full-
featured IDE for developing code generation. Difference between these tools is that
Acceleo is limited to work only with particular models (EMF), while Xtend2 permits
using other data sources, providing an easy way to call any Java code available.

3. CASE STUDY
To illustrate our approach, this section presents a case study on a SPL of enterprise
software applications, a product line with functional and quality variability. Given that
this SPL must support configuration of several product line members (SPLs) to derive
different ESAs, we elaborate on the description of a SPL for Project Management
systems. This description serves as an exemplification of the kind of software product
lines that can be derived from the SPL of enterprise software applications.

The SPL for Project Management systems supports a variety of functionalities for
management of projects, risks and users. In addition, it supports variations in the quality
attributes each product must exhibit in order to offer different products to medium and big
companies. Following, we will describe its functional variability, which is a set of
optional and mandatory functionalities that the SPL offers. This SPL must always allow
the authentication of users against the system, using a login and a password. Once the
user is authenticated, the product line might provide the following super set of
functionalities to users:

- List all the users registered in the system
- Register new users in the system

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

2	
 http://eclipse.org/xtend/	

3	
 https://eclipse.org/acceleo/	

18	

	

- Register new projects in the system
- Update the information related to a project of the system
- Delete projects from the system
- Add users to projects, in order to indicate the members of each project
- Remove users from projects, in case a user is no longer a member of a project
- Create project risks. Notice that risks existence depends on a project’s existence
- Remove risks from projects
- Set a project manager from the users related to a project. Notice that this functionality

requires the addition of users to projects
- List all the risks of a project
- List all the projects registered in the system

Every project must have an id (serial number), a name, a description and a start date.
Each registered user must have an identification number, a name, a cellphone number and
a password. To identify risk, each one must provide an id (number), a name, a
description, an impact (decimal), a probability (decimal) and the identification of the
project it belongs to.

These functionalities are usually modeled as use cases that can be included in the
application during application engineering. These use cases can be modeled [87] [88]
including stereotypes such as <<Mandatory>> and <Optional>> to represent if the use
case must be included in all the products or might be included in one particular product.
We also use the <<requires>> stereotype to indicate that the selection of a use case
demands the selection of the use case it requires. Figure 1 shows the functional variability
of the SPL for Project Management systems in terms of use cases. The <<requires>>
dependency between “Create Project Risk” and “Register New User” use cases indicates
that a risk cannot be created unless the project that it belongs to is created first. The
<<requires>> dependency between “Set Project Manager” and “Add User To Project”
means that a project can only set its manager as long as it has users associated to it. Thus,
the project manager has to be one of these related users. Notice that many products for
Project Management might be configured, by selecting several optional use cases.

19	

	

	

Figure	
 1.	
 Use	
 Cases	
 of	
 the	
 SPL	
 for	
 Projects	
 Management

Figure 1 presents the SPL for Project Management systems as an example of a software
product line that can be derived from the SPL of enterprise applications. Some authors
like Robert B. identify use case patterns [89], which are recurrent user intentions and
system responsibilities that are present in several systems. We use this concept in order to
abstract and group the functional scope of the SPL of enterprise applications. Our
proposal includes the following use case patterns as part of the functional scope we can
reach. Figure 2 summarizes these use case patterns, which conform the functional scope
of the SPL of enterprise applications.

- List all elements from a business entity. This abstraction applies to the use cases:

List All Projects, List All Risks and List All Users, where the business entity
abstraction might be concretized into Project, Risk and User. This use case pattern
refers to retrieving all instances of a particular business entity.

- Create a master business entity. This abstraction is used in the uses cases: Register
New User and Register New Project, where master stands for an entity that is self
identified and do not depends on the existence of others to be created [90] [91]. The
business entity abstraction might be concretized to Project and Risk.

- Create a detail business entity. This abstraction applies to the use case: Create

Project Risk, where detail stands for an entity that depends on the existence of
another entity to be identified and created [90] [91], which is specified by the
<<requires>> stereotype. The business entity abstraction in this case is concretized
into Risk.

- Delete a master business entity. This abstraction applies to the use case: Delete

Project, where the business entity abstraction is concretized into Project.

20	

	

- Associate two master business entities (One to Many fashion). This abstraction is

used in the use case: Add User To Project, given that both business entities User and
Project are masters and a relationship between them is created, where one project
may have many users associated.

- Associate two business entities (One to One fashion). This abstraction applies to

the use case: Set Project Manager, given that it relates one User to one Project. This
association has the particularity that it may only be established from a previous
existing “one to many” association between the same entities. This constraint is
represented by the <<requires>> association, e.g. a project can set its manager as
long as it has users related to it (the manager must be one of these users).

- Update a master business entity. This abstraction is used in the use case: Update

Project, where the business entity abstraction is concretized into Project.

- Delete a detail business entity. This abstraction applies to the use case: Remove

Project Risk, where the business entity abstraction is concretized into Risk.

- Disassociate two master business entities (One to Many fashion). This abstraction

applies to the use case: Remove User From Project, given that both business entities
User and Project are masters and an existing “one to many” relationship between
them will be eliminated.

- Authentication of a business entity. This abstraction is used in the use case: User

Authentication, where the User entity provides the information to be used in the
authentication process. This use case pattern must be particularized for one and only
one business entity, i.e. User entity only.

	

Figure	
 2.	
 Use	
 case	
 patterns	
 of	
 the	
 SPL	
 of	
 enterprise	
 applications	

21	

	

Notice that this super set of use case patterns can be used to configure several SPL of
enterprise applications. For instance, figure 1 shows how these use case patterns are
concretized to create a SPL for Project Management systems. Another customer might be
interested in configuring a SPL for Reference Management systems, where the
functionalities are creation/deletion of Authors and Books, allowing relating these two
concepts. Figure 3 depicts the functional variability of this SPL in terms of use cases.

	

Figure	
 3.	
 Use	
 Cases	
 of	
 the	
 SPL	
 for	
 Reference	
 Management

The software product lines derived from the SPL of enterprise applications must also
consider quality variability, such as levels of performance and/or security. This issue will
be addressed in section 4.3.2.

4. PROPOSAL
Our contribution is a approach and tool support that, making use of software design good
practices, allows a product line engineer to automatically derive products that are
configured based on a set of functional and quality constraints. To do so, we provide a
Domain Metamodel to deal with functional variability, we propose a features model to
address non-functional (quality) variability; we mapped each variant of the quality model
with enterprise Java patterns that promote the related quality attribute, and we developed
a generation engine that takes a model from our domain metamodel and a configuration
of our quality model as inputs to generate a product that satisfies such constraints.
Following sections explain these steps in detail.

GENERAL PROCESS FOR PRODUCT DERIVATION
In order to derive product line members by using our proposal, a series of steps must be
performed. Figure 4 depicts the process we designed for product line engineers to create
SPLs. The first activity is concerned to define the product line scope, which we separate
in functional scope and quality scope. This includes relating functionalities and quality
attributes in order to determine how quality decisions impact the implementation of
product functionalities. Once the scope has been set and the required relationships have
been determined, the software design process of product line members begins. For that,
as part of our generation engine, enterprise design patterns are selected according to
functionality and quality attributes previously defined; such design patterns are used to

22	

	

design applications according to our controlled and pre-set Reference Architecture.
Finally, code generation is performed, coupling design decision incrementally.

	

Figure	
 4.	
 General	
 Process	
 for	
 product	
 derivation

4.1. DEFINE THE SOFTWARE PRODUCT LINE SCOPE

4.1.1. FUNCTIONAL SCOPE DEFINITION

The first activity that a product line engineer must perform to use our proposal is the
definition of the functional scope of the line to be configured. To do so, we presented in
figure 2 a super set of use case patterns to enable configuration of product line members.
Parting from this, we have taken and adapted a Domain Metamodel (DMM) from our
previous work [92] in order to represent the use case patterns our strategy involves. The
metamodel captures the variability in terms of business entities and their relationships,
enabling managing functional variability for enterprise applications that involve
CRUD operations over business entities, considering Master-Detail (One to Many) and
“One to One” relationships between them. Creating a domain model according to this
domain metamodel determines the functional scope of the product line member to be
configured. The concepts involved in the domain metamodel are explained below. Figure
5 shows the domain metamodel.

- Business. Represents the identification of the SPL that is going to be configured. This

identification must be provided as the name of the Business concept, i.e. “Project
Management SPL”.

- Business Entity. Represents a main concept of the business that stores data values
and expose them through properties; they contain and manage business data used by
the products derived from the SPL, i.e. Project, User and Risk. The name property
acts as a label for the Business Entity, while the isAuthenticable property says
whether the entity will be used as the authentication of the SPL or not.

- Attribute: Every Business Entity has many attributes. An attribute contains particular

information related to an entity, i.e. Project name and start date. Each attribute
specifies its type, which can be any of the values exposed by the DataType concept,
and it must indicate weather it is required (i.e. needs a particular value or can be null)
and if it’s the identification of its container (BusinessEntity).

- Association. Business entities might be related in two ways: “one to one” and “one to

many”. SimpleAssociation concept represents a “one to one” association, where the
relatedEntity relationship indicates the associated entity, i.e. Project’s related entity is
User. MultipleAssociation concept represents a “one to many” association, which is
a Master-Detail association, where the entity relationship indicates the entity that
plays the Detail Role, i.e. Project’s detail entity is User.

23	

	

- Contracts. This concept specifies the operations or services that a Business Entity
exposes. Such operations are CRUD related, i.e. creation, updating, deletion and
retrieval of Projects. ContractElements are a particular type of Contracts that
determine the operations that can be performed within a Master-Detail relationship,
such as addition and deletion of details to a master, i.e. add users to a project.

The following restrictions and conditions must be taken into account, in order to properly
use the Domain Metamodel:

1. There must be one and only one Business Entity with its isAuthenticable attribute set

to true. This is due to the authentication of the SPL that must be realized with only
one entity.

2. Authenticable Business Entity must define a password Attribute, which is required in
the authentication process.

3. Master Business Entities are the ones that own one or many Associations of type
Multiple.

4. Detail Business Entities are the ones that do not own any Association.
5. Each Association must have one and only one owner.
6. Every Business Entity might have at most one Contract of each type, i.e. one ListAll

Contract only.

	

Figure	
 5.	
 Domain	
 Metamodel	

Figure 6a presents a domain model that corresponds to the functional scope of the SPL
for Project Management systems presented as use case diagram in figure 1. Figure 6b
depicts the corresponding domain model of the functional scope of the SPL for Reference
Management systems presented as use case diagram in figure 3.

24	

	

	

Figure	
 6.	
 Domain	
 Model	
 example	

If a product line engineer is interested in extending the domain metamodel to support a
wider range of operations for the product line members, he/she may analyze the use cases
involved in the target product line members, searching for similar characteristics among
them that might be generalized or taken to a higher level of abstraction, allowing the
identification and declaration of abstract use case patterns that are particularized
depending on business functional requirements. Then, the newly use case patterns must
be mapped into domain concepts e.g. business entities, so they can be included in the
domain metamodel.

4.1.2. QUALITY SCOPE DEFINITION
The products we are able to derive using our approach must satisfy the functional needs
of the customers as well as have the desired quality attributes. Thus, the product line
engineer must define the quality scope of the SPL of enterprise applications. Our
approach enables defining the quality scope in terms of QAs, particularly, two of them,
performance and security. ISO 25010 defines performance as “the degree to which the
software product provides appropriate performance, relative to the amount of resources
used, under stated conditions”. It is specialized into Time Behavior, Resource
Utilization and Performance Efficiency Compliance. We focus on the first one, which
determines the degree to which the software product provides appropriate response and
processing times and throughput rates when performing its function, under stated
conditions. On the other hand, security is described as “the protection of system items
from accidental or malicious access, use, modification, destruction, or disclosure”, and it
is specialized into 6 attributes. We consider 3 of those 6: Confidentiality, Authenticity
and Integrity. The first one is related to protection from unauthorized disclosure of data

25	

	

or information, whether accidental or deliberate, the second one deals with proving the
identity of a subject or resource, the third one ensures completeness of the data by
avoiding modifications in an unauthorized or undetected manner. We use feature models
to represent QAs like the work presented in [15], this help us to avoid depending on
specific tools for modeling. Figure 7 depicts our QAs variability model.

	

Figure	
 7.	
 QAs	
 Variability	
 Model

- Performance: Related to the response time (time execution) of database operations,
in particular, retrieval of several records of a table (entity). This QA provides the
following levels:

o Normal: Refers to achieving response times equivalent to the provided by the
database system. We will call such time X1.

o Medium: Refers to achieving lower response times than the ones offered by
the database system. Let X2 be the medium performance time; the condition
X2 < X1 will always occur.

o High: Refers to achieving lowest possible response times for data retrieval.
Let X3 be lowest possible response times; the condition X3 < X2 will always
occur.

- Security: Related to protecting access, use, modification and/or disclosure of the

system items. This QA is specialized into the following QAs:
o Confidentiality: Provides a protection to the system data by encrypting it

before it reaches the database. This QA provides two levels: one to indicate
that the system data must be encrypted, and another one to indicate ignoring
of data encryption.

o Integrity: Refers to proving the identity of a subject that tries to access the
system. This QA provides an optional level that enables blocking an account
when several failed login attempts occur.

o Authenticity: Provides proper authorization to users when they try to
access/modify the system data. This QA provides an optional level that
enables the system to provide a type of access control to its functionalities.	

Notice that every QA is a mandatory feature. Such conditions occurs because as said in
[93], functionalities can be definitely involved in or removed from a product of the SPL,

26	

	

but an QA can never be said to be involved or removed but only high or low in the degree
of its effectiveness. Therefore, we can still consider QAs from a realistic viewpoint, that
is to say a QA can be seen as not concerned if no special consideration is needed for it.
Time Execution and Confidentiality QAs are exclusive grouped features, meaning that
only one level of them can be selected at a time. We also decided to group Integrity and
Authenticity QAs to illustrate an inclusive grouped feature. Such QAs can be modeled as
separate QAs as well.

4.1.2.1. RELATE THE DMM WITH THE QAS VARIABILITY MODEL
By using our approach, product line engineers accurately model the impacts of functional
variants on quality attributes and vice versa. These impact relationships are indispensable
to take the most adequate decisions during design and derivation of products to promote
the required quality levels. Our concern with these relationships is to make explicit how
software design practices are used to promote desired quality levels. Thus, in essence, we
seek to recognize which QAs affect the implementation of the functionalities of our SPL
and how they do it.

We part from the premise that functionalities from the Domain Metamodel are affected
by the QAs contained in the QAs variability model. That means that functionalities may
vary their implementation depending on the desired quality level. We decided to use
syntax similar to BBNs [14] to represent these relationships, but we do not consider
quantification of them, given that we are interested in identifying and using design
strategies to promote desired quality levels and not in measuring them. Figure 8 depicts
these relationships.

	

Figure	
 8.	
 Relationships	
 between	
 DMM	
 and	
 QAs	
 Variability	
 Model

Given that ListAll Contract from our Domain metamodel reefers to the operation of
retrieving the entire records of a Business Entity (which is mapped to a table in the
database), and that we defined Time Execution as the response time of database
operations, in particular, retrieval of several records of a table (entity), the selection of a
Time Execution level directly affects the implementation of the ListAll operation.

27	

	

Since Confidentiality QA deals with data encryption, every functionality of our Domain
Metamodel must be adapted to support such operation. In our case, Contracts element
represents all possible functionalities that our SPL might satisfy; therefore Confidentiality
impacts the implementation of each Contract of our line. Authenticity QA also affects
every Contract of the line, because it authorizes the execution of each functionality,
according to the permissions provided by a role; therefore, a validation of permissions
must be performed prior the execution of every Contract. We also spotted that Integrity
QA impacts the implementation of the authenticable Business Entity, since it provides an
extra action on the authentication operation (which is provided by this entity) to block an
account after several failed access attempts.

4.1.2.1.1. COMPLEX NATURE OF RELATIONSHIPS

The definition of relationships among QAs and functionalities involves different kinds of
relationships. First kind refers to granularity, indicating the scope of the relationships,
that is, whether a relationship impacts the entire product functionalities or just some of
them. Granularity is divided into two types, coarse-grained and fine-grained. Former
implies that every instance of a functionality affected by a QA has to promote the same
level of quality given; this means that if we part from the model depicted in figure 5,
when a level of Time Execution is selected, “Medium” for example, every instance of
ListAll Contract has to promote such level, therefore, the implementation of the
Contracts ListAllProjects and ListAllUsers must be adapted to develop a medium level of
time execution. Latter relationship, fine-grained, suggests that different levels of quality
may be promoted by the instances of a functionality affected by a QA, thus
ListAllProjects Contract might promote a medium level of time execution, while
ListAllUsers could address a high level of performance. Relationships in this work are
limited to coarse-grained nature.

The second kind of relationship refers to how quality levels impact on product
functionalities and vice versa. Particularly, we can see that:

1. One QA may influence many functionalities. For example, the choice of using data

encryption has influence on every Contract (functionality) of our Domain
Metamodel.

2. One functionality may be influenced by many QAs. For example, levels of time
execution and security have influence on ListAll Contract implementation.

The third kind of relationship considers how QAs interact with each other. We see that
different QAs may be competing or synergic, that is, one QA may be affected by many
QAs, with some contributing positively and others contributing negatively. This kind of
relationship raises some conflicts when a QA influences negatively over another that
must be explicitly considered:

- Synergic Conflict. This establishes a soft condition, which implies that although the

impact of a QA over another QA lowers the promotion of the desired quality levels,
they can still both coexist. For example, if High level of Time Execution is desired, a
particular response time Tr is expected. If Confidentiality of the data is also required

28	

	

(Data Encrypted), then the Tr time provided by ListAll functionalities is diminished,
due to the required time of decryption of retrieved data from the database. Even
when both Time Execution and Confidentiality levels are to be promoted, High level
of time execution in the presence of Data Encryption will still be faster than a
Normal level of it. Therefore, both QA may be selected. This condition must be
informed when configuring the desired quality levels, enabling the user to decide
whether the resulting quality levels fit his needs or not.

- Competing Conflict. This establishes a hard condition, which denotes that two QAs
cannot coexist, because the selection of one entirely inhibits or contradicts the other,
provoking a mutual exclusion among of them. For example, let’s assume that
promoting a Medium level of Time Execution requires a cache to avoid reprocesses
for similar requests to the database. Let’s also say that we are interested in promoting
a Medium level of Availability (achieve a degraded operational level when one of the
servers is unavailable), which uses a spare computing pattern to replace a failed
component. These spare components require to be initialized to a persistent state
before enter into operation. This pattern promotes the use of persistent storage (e.g.
database) to maintain application state and avoid the use of memory. Hence,
accessing the database to handle requests is mandatory and no caches are permitted.
When a product is configured to promote these two quality levels a conflict arises,
given that one requires using a cache structure that’s forbidden by the other one.
Thus, we conclude that in our example these two quality levels cannot be applied
simultaneously. We do not provide a mechanism in this work to handle it.

Once the quality scope is characterized in the QAs variability model, the product line
engineer must configure the quality levels for each product line member. Selecting the
desired quality levels from the QAs variability model does this. Figure 9 depicts the SPL
for Product Management systems presented in figure 6a configured to promote a medium
level of time execution and an authentication lockout level of integrity. At this point, the
product line engineer knows which functionalities the selected quality levels impact on.
In order to extend the quality scope of the SPL of enterprise applications, different QAs
must be considered, e.g. maintainability and usability. Once the target QAs have been
selected, the interactions among these attributes and the functionalities must be set.

29	

	

	

Figure	
 9.	
 Example	
 of	
 quality	
 configuration	
 impact	
 on	
 SPL	
 for	
 Project	
 Management	
 systems	

4.2. DETERMINE DESIGN DECISIONS OF PRODUCT LINE MEMBERS

Once the SPL scope is set, our approach states that the product line engineer must take
design decisions to determine how quality levels of the QAs variability model impact the
implementation of functionalities from the DMM.	

4.2.1. IDENTIFY ENTERPRISE DESIGN PATTERNS TO PROMOTE VARIANTS FROM THE QAS
MODEL

We selected specific design tactics/strategies to promote the quality levels provided by
each QA. To do so, we turned to design patterns. Usually, design patterns are organized
in catalogs, according to the domain scope. Since our work is focused on managing
functional variability for enterprise applications, we based on Bien’s catalog, which
provides a set of patterns that are intended to be use in the context of enterprise
applications, using the Java Enterprise Edition (JEE) specification. We use the following
patterns in order to promote quality levels for Time Execution:

- Normal Time Execution level refers to achieving response times equivalent to the

provided by the database system, therefore, the default implementation of a JEE
component (bean) that manages data retrieval is sufficient to promote this level. Bien
proposes the ECB (Entity-Control-Boundary) approach, which acts as the base
(default) structure to conceive JEE components. Thus, in order to promote the
Normal level of Time Execution we will use the plain ECB approach.

- The Fast Lane Reader (FLR) pattern provides a more efficient way to access large
amount of read-only data. According to Bien, there are several strategies to
implement this pattern, depending on business needs and conditions. In our case, we
seek to achieve lower response times than the ones offered by the database system
for our Medium Time Execution level. The ListAll functionality retrieves all the
records from the database of the related Business Entity, where a record is a set of

30	

	

values for the Attributes of that entity. We decided to use the JDBC strategy to
implement the FLR, in order to promote a Medium level of Time Execution. This
strategy takes advantage of the read-only access to the database, to provide direct
access to the DataSource [94] resource, surpassing the need of a PersistenceContext
[95] (management of instances and lifecycle of the data base entities). This ends up
in retrieving a bunch of primitives (Attributes values) from the database for each
record of the Business Entity, improving the response time of this operation.

- To promote a High level of Time Execution, we also rely on FLR pattern, the

difference is that we use another strategy to implement it. Given that this level
pursues the improvement of the response times provided by the Medium level, we
used the Paginator strategy, which states that for dealing with the retrieval of several
records, the entire result set can be divided into smaller chunks. Knowing this
strategy, we found that dealing with several chunks of records might be performed
sequentially and in parallel, so we provided both strategies to deal with High level of
Time Execution as follows:

o Sync Strategy. Uses one thread of execution to retrieve a several chunks of
records. Each chunk is displayed to the user as is gathered. This is achieved
by applying a plain Paginator.

o Async Strategy. Uses several threads of execution to retrieve a several
chunks of records. Each thread’s objective is to retrieve a chunk. All chunks
must be gathered (each thread must complete its task) before displaying them
to the user. This is achieved by applying the Parallelizer pattern, which
increases the throughput as it performs multiple asynchronous operations.

To deal with security levels, we evaluated how Bien’s patterns might contribute to
promoting them, and we found that Data Unencrypted level of Confidentiality can also be
satisfied with the default implementation of a Java EE component (bean) that promotes
CRUD functionalities. Thus, ECB approach is also used to promote this level. To deal
with Data Encryption level, we consulted Oracle docs [96] and we decided to use the
Java security API [97] to address this issue. In particular, we selected the Password Based
Encryption (PBE) strategy to create a CryptographyManager that is responsible of
providing entire encryption and decryption services, based on this cryptography method.
Notice that this manager may provide different levels of encryption, by using different
strategies like RSA [98] and AES [99].

Dealing with Integrity & Authenticity QA required us to consult catalogs of patterns
specialized in security. We studied the “Security Patterns in Practice” catalog [100],
which provides software patterns to design secure architectures. Taking advantage of the
classification of patterns based on the security concern that is provided by this catalog,
we studied the patterns related to access control, in order to find the most suitable pattern
to provide our Authorization level (related to the Authenticity QA). We decided to use the
Role-Based Access Control pattern, because it describes how to assign rights based on the
functionalities of users in an environment in which control of access to computing
resources like system data, is required, which accommodates to our expectations for
Authenticity.

31	

	

We use the Lockout pattern from the catalog in [101] to promote our Authentication
Lockout level (Integrity QA). This pattern aligns perfectly with our Integrity definition,
given that it protects customer accounts from automated password-guessing attacks, by
implementing a limit on incorrect password attempts before further attempts are
disallowed. Figure 10 depicts the QAs variability model (including the two newly High
Time Execution strategies) and how the quality levels are realized through software
design patterns.

	

Figure	
 10.	
 Software	
 Design	
 Patterns	
 to	
 promote	
 quality	
 levels	

4.2.2. REFERENCE ARCHITECTURE DEFINITION

This section consolidates specific design decisions based on identified enterprise design
patterns in previous section, providing class and sequence diagrams to illustrate how each
pattern must be applied, depending on the quality level and the impact relationships
between functionalities and QAs.

4.2.2.1. MACRO ARCHITECTURE SPECIFICATION
The macro architecture of every product line member follows the three-layer architectural
style [29] [31], which defines three layers: the presentation, logic and data-access layers.
An application designed using this style includes these three layers. In addition, each
layer comprises components with layer-specific types and responsibilities: the
presentation layer comprises GUI components; the logic layer includes the components

32	

	

that implement the logic behind the business transactions; and the data access layer
includes data-access components that store and retrieve data from files, servers and
databases. Figure 11 provides a component view representing this layer division.	

	

Figure	
 11.	
 Macroarchitecture:	
 Components	
 view

4.2.2.1.1. MACRO ARCHITECTURE RESTRICTIONS
Figure 11 presents how components are arranged in the three-layer style, and how they
may interact with each other. From this figure we can conclude the following restrictions
that apply to every product of the line:

1. Data Access layer contain a unique component that can be identified as a generic

Data Access Object (DAO), given that it provides all-encompassing services to deal
with data management.

2. Every Business Entity of the DMM will be mapped into two components: One GUI
component and one Domain component, i.e. a BusinessEntity X will create an X GUI
component and an X domain component. Former provides user interface
visualization and functioning, while latter implements the domain logic related to the
business entity, which is specified by the contracts and relationships configured
when a Domain Model is derived from the DMM.

3. Domain Logic components may interact with other components among the same

layer, that is, provide and consume services. Presentation components may also
interact with other components contained in this layer. When a GUI component
needs to perform a business operation, it must consume the services provided by the
corresponding Domain component.

4. Due to Business Entity relationships, it is possible that a GUI component requires a

service from a domain component of a different business entity, i.e. ProjectUI
component might want to list the users of a project, which is a service provided by
UsersDomainLogic. In this case, the corresponding GUI component of such domain
entity (UserUI in this case) will expose a service that invokes the required domain
service. This decision enables the interested GUI component to access the required

33	

	

service through a relationship on the same layer, plus it prevents mixing
responsibilities, i.e. ProjectUI access ProjectsDomainLogic services only.

For developing our case study, we used different technologies to construct the
components contained by each layer. To develop GUI components we used Vaadin 74,
which is a Java framework that enables building web components using java code. The
components that contain the business logic will be developed using Enterprise Java Beans
(EJB 3.1) specification [102], which handles common concerns as transactional integrity,
and security in a standard way, leaving programmers free to concentrate on the particular
problem at hand. Components that handle data access and persistence will be developed
using the Java Persistence API (JPA 2.4.2) [103] specification, which provides a POJO
persistence model for object-relational mapping.

4.2.2.2. MICRO ARCHITECTURE SPECIFICATION
After identifying the components that will be part of the product members of the SPL of
enterprise applications and the relationships between them, we will analyze micro
architectural concerns, which are related to specifying the internal structure of each
component. Depending on the layer of the component, several design patterns may be
used to implement them [31] [104]. Thus, implementation of the components for each
layer will be detailed in the following sections.

4.2.2.2.1. PRESENTATION COMPONENTS
The implementation of GUI components commonly involves the use of UI Controllers
[105]. The UI Controller is the entity that processes the requests it receives from a related
form or view. To implement a UI controller in the presentation layer of a web-based
application, a designer can use the Application controller, the Front controller or the
Page controller pattern [104]. In addition, to implement a view controller, a designer can
use a Template view, a Transform view or a Two-phase view pattern [31][9]. Software
architects decide one pattern or the other depending on the development platform and the
requirements for the application. In our case, we decided that each GUI component will
have an UI controller and a view associated to it. Figure 12 depicts this structure.

	

Figure	
 12.	
 Microarchitecture	
 of	
 a	
 Presentation	
 Component	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

4	
 https://vaadin.com/home	

34	

	

In Figure 12, UI controller is responsible for display the view and handling its events. It
also invokes domain logic services depending on the functionalities provided by the
view. The view is in charge of providing the user interface layout to manage the
functionalities associated to the Business Entity that it represents.

4.2.2.2.2. DOMAIN LOGIC COMPONENTS

We use the ECB approach proposed by Bien [39] to define the base (abstract) structure of
our domain components. This approach uses the basic elements involved in robustness
diagrams [106] (Entity-Control-Boundary) to structure the internal composition of
components. Thus, each domain logic component will have these three elements in form
of layers (packages within the component’s implementation). Bien also provides a pattern
for each layer, identified with the same name:

- Boundary is a façade, which exposes a component’s services in a convenient way. A

client only has to know a Boundary’s method in order to access the component’s
functionality.

- Control is a reusable, fine-grained service behind a Boundary. It is optional and
usually created during Boundary refactorings. Uncohesive functionality is extracted
from Boundaries into focused Controls.

- Entity refers to object-oriented or procedural domain objects. This conceptual entity

is persisted and mapped to a single JPA entity.

Every Business Entity of our DMM will always provide a Boundary and an Entity.
Besides these patterns, we determined the following conditions. Figure 13 presents the
base structure of the domain components.

- Control pattern will be used in the following scenarios:

o The presence of a Master-Detail relationship between two Business
Entities. For example, listing the users related to a project requires
retrieving data from User and Project entities. To prevent
UserDomainLogic from accessing Project entity (breaking responsibilities
and increasing coupling) to execute the retrieval query, a UserDAO is
generated. Such DAO provides the implementation of this query using
only the id of the project and not the entire entity. Thus, Project entity
manipulation is properly managed. Notice that the DAO will always be
located in the component of the detail entity. DAOs will be treated as
Controls in this work.

o Selection of particular quality levels. Depending on the quality level
selected of the QAs in our model, different controls might be needed to
implement the associated design pattern. These variations will be detailed
in section 4.2.2.2.3.

35	

	

- We intend to follow SOA principles; therefore, we must provide the must convenient
level of encapsulation of our components. Parting from this assumption, Bien
recommends using the Transfer Object (TO) pattern (which encapsulates an carries
data between components) to avoid direct exposure of Entity instances to the client.
Hence, every Entity will be mapped to its representing TO. TOs will be located in an
independent utilities java project to be used by any component.

	

Figure	
 13.	
 General	
 Microarchitecture	
 of	
 Domain	
 Components	

Data Access Components won’t be discussed given that we decided to use JPA
specification to manage persistence issues. Thus, implementation details and pattern in
this layer are omitted.

4.2.2.2.3. CONSIDERING QUALITY VARIATIONS IN THE REFERENCE ARCHITECTURE

To implement different levels of quality, QAs such as performance or security,
component’s internal structure must vary according to the selected design patterns shown
in figure 10. Following sections detail domain logic component’s adaptations for each
quality level of the QAs variability model.

4.2.2.2.3.1. TIME EXECUTION
According to figure 8, time execution modifies the implementation of ListAll operations.
Therefore, the following diagrams and examples will be focused on how the components
must accommodate their internal structure according to the level of time execution, in
order to perform this type of operations.

NORMAL LEVEL

Given that we decided to achieve this level using the ECB approach, the internal structure
of a domain component that is to promote this level must look like the one shown in

36	

	

figure 13. Notice that this structure is the abstract implementation of the ECB approach,
thus, we will elaborate the following case to illustrate how to concretize the ECB. Parting
from the SPL for Project Management systems presented in the case study section, a
Business Entity for managing Projects is needed, and such entity must consider time
execution levels due to its interest in listing all projects. Keeping in mind restriction two
from section 4.2.2.1.1, a domain component for projects has to be created. This
component concretization of ECB approach is shown in figure 14.

	

Figure	
 14.	
 Normal	
 Time	
 Execution	
 Concrete	
 Design

Notice that no Control is needed. Therefore, it is no used by the projects domain logic
component. To show how these elements operate with each other when a user requires
listing all projects, Figure 15 presents a sequence diagram to illustrate the interaction
between classes in figure 14.

	

Figure	
 15.	
 ListAll	
 projects	
 use	
 case	
 sequence	
 diagram	
 (Normal	
 Time	
 Execution)

37	

	

Figure 15 illustrates how to use the EntityManager (provided by the JPA specification) to
retrieve all projects. Notice that ProjectController interacts with project’s component
interface (IProjectManager), enabling its implementation to be client independent. The
method createNamedQuery takes two parameters: one to specify the SQL query to be
executed, and another one to identify the Entity who owns the query declaration; hence,
this method can be used to execute any desired query. Annex 1 illustrates how to manage
query declarations. Annex 2 shows an example implementation of data retrieval using the
EntityManager.

MEDIUM LEVEL

This particular level requires the use of the FLR pattern with the JDBC strategy. This
implies the need for a Control to manage retrieval of all records using the DataSource
resource instead of the EntityManager. This condition is an exception to our macro
architecture restrictions, given that the database is accessed using the JDBC API, by
injecting the DataSource resource. It is important to clarify that this access
mechanism will only be used for ListAll operations. The rest of them will be managed
using the EntityManager. Figure 16 depicts how component’s internal structure must be
adapted. Notice how aFLR concrete class uses the DataSource to execute retrieval
queries.

	

Figure	
 16.	
 Medium	
 Time	
 Execution	
 Abstract	
 Design

We will continue using our previous example of the “list all projects” requirement
presented in the case study section, to illustrate how to concretize this diagram. Figure 17
depicts the concretization of diagram in figure 16; figure 18 shows its sequence diagram.

38	

	

	

Figure	
 17.	
 Medium	
 Time	
 Execution	
 Concrete	
 Design

	

Figure	
 18.	
 ListAll	
 projects	
 use	
 case	
 sequence	
 diagram	
 (Medium	
 Time	
 Execution)	

Notice how the IProjectManager delegates the retrieval of projects to IProjectBasicFLR.
This interface uses its concretization (ProjectBasicFLR) to access the DataSource
resource, create and perform the retrieval query. Annex 3 provides an implementation of
data retrieval using this pattern.

HIGH SYNC LEVEL

This particular level requires the use of the FLR pattern with the Paginator strategy. This
implies the need for a Control to manage retrieval of all records using the DataSource
resource, plus a mechanism to indicate the current page and the chunk size to be
retrieved. The JDBC API is also needed to implement this pattern. The use of this
pattern will only affect ListAll operations. The rest of them will be managed using the
EntityManager. Figure 19 depicts how component’s internal structure must be adapted.

39	

	

	

Figure	
 19.	
 High	
 Sync	
 Time	
 Execution	
 Abstract	
 Design

Bien proposes to use this pattern using a cache (Stateful bean [107]) to handle iteration
logic, but given that we are following SOA principles, caches cannot be used. To deal
with this issue, we delegated the iteration logic to the UI controller. Thus, the UI
controller must indicate the current page and the chunk size to the FLR, so it retrieves the
proper data. This adaptation of the pattern implies modifying the listAllElements service
to take two parameters: one to indicate the current page (start) and another indicating the
chunk size (maxResults). We also decided that displaying of pages does not have to be
linked to the user interface (as proposed by Bien), e.g. a “Next button” to retrieve the
following page of records. Therefore, the entire set of records will be displayed (as in
previous time execution levels) but its retrieval will occur sequentially in several chunks.
Following our previous example of the “list all projects” requirement presented in the
case study section, we illustrate how to concretize the previous diagram. Figure 20
depicts this action. The corresponding sequence diagram to this retrieval process is
shown in figure 21.

40	

	

	

Figure	
 20.	
 High	
 Sync	
 Time	
 Execution	
 Concrete	
 Design

	

Figure	
 21.	
 ListAll	
 projects	
 use	
 case	
 sequence	
 diagram	
 (High	
 Sync	
 Time	
 Execution)

Implementation of this pattern is similar to the one shown for the medium level of time
execution, however, this one considers start and maxResults parameters to limit the
projects retrieval query. Observing the sequence diagram in figure 21, ProjecController
has to delegate the updates of the project list to a specialized class (ProjectListUpdater)
that executes the updates in an independent thread. This is needed to provide a fluent
visualization of the project list, because the retrieval of several chunks of projects is
performed in the same thread, therefore, displaying the results will only occur when this
thread finishes its execution. Using the ProjectListUpdater enables displaying every
chunk right after it reaches the ProjectController, so the user can perceive the
optimization to the retrieval time (chunks are displayed incrementally as they arrive).
This additional class will be part of every GUI component that involves a ListAll
operation, only if this level of time execution (high sync) is desired. Annex 4 provides an
implementation of data retrieval using this pattern.

41	

	

HIGH ASYNC LEVEL

We identified the Parallelizer pattern to promote a High Time Execution level. This
pattern uses several threads of execution to retrieve several chunks of records. Each
thread’s objective is to retrieve a chunk. All chunks must be gathered (each thread must
complete its task) before displaying them to the user. Thus, this pattern serves as a
coordinator of several parallel requests of data retrieval. The general structure of this
pattern is shown in figure 22.

	

Figure	
 22.	
 High	
 Async	
 Time	
 Execution	
 Abstract	
 Design

aParallelizer class is in charge of launching the retrieval threads, and assembling their
results into one list of records. aAsyncWorker provides the implementation of the task
that each thread is going to execute. Such task must be of asynchronous nature, given that
it is going to be executed by many threads at the same time. Figure 23 illustrates how to
concretize this diagram. The interactions of the classes involved in this pattern are shown
in figure 24.

42	

	

	

Figure	
 23.	
 High	
 Async	
 Time	
 Execution	
 Concrete	
 Design

	

Figure	
 24.	
 ListAll	
 projects	
 use	
 case	
 sequence	
 diagram	
 (High	
 Async	
 Time	
 Execution)

In figure 24, ProjectParallelizer has two main loops, one to launch the execution of all
instantiated threads, and another one to gather results from all of them. It is important to
have two different loops because the use of the get() method of a Future freezes the
current execution Thread, thus, if it is invoked within the same loop, each thread must be
fully executed to launch the next one, causing a sequential retrieval of data.
Implementation of listAllProjects(start,	
 maxResults) in ProjectAsyncWorker
class is the same as the one shown in “high sync level” section. The only difference is

43	

	

that the resulting list is wrapped into a Future to enable asynchronous operations. Annex
5 provides an implementation of data retrieval using this pattern.

4.2.2.2.3.2. CONFIDENTIALITY
We determined in figure 8 that this QA affects the implementation of every Contracts of
the DMM. Given that Data Unencrypted level is satisfied using the ECB approach, no
changes on the internal structure of components will appear. Hence, we will focus on
Data Encrypted level and its implications.

DATA ENCRYPTED

We selected the Password Based Encryption (PBE) strategy to create a
CryptographyManager that is responsible of providing entire encryption and decryption
services, based on this cryptography method. Figure 25 shows the
CryptographyManager.

	

Figure	
 25.	
 Security-­‐Confidentiality	
 Manager	
 Concrete	
 Design

This manager has to be used as a Control by every domain logic component, in order to
manage encryption tasks with the data involved in the Contracts of each component. To
do so, every component must have an instance of this manager (a Control per
component), causing code duplication. To overcome this issue, we decided to provide
this manager as an independent component, which is located in the domain logic layer.
This decision enables centralizing confidentiality concerns in one place, plus it promotes
reuse of encryption services. Implementing this strategy implies that every domain
component must consume the doFinal service provided by the CryptographyManager
every time a contract (component service) is executed, considering the following
guidelines:

- Contracts related to Insert and Update operations must encrypt the data before its

storage on the database.
- Rest of the contracts (Retrieve and Delete) must decrypt the data before sending it to

the final user (displaying it on the corresponding GUI).
- Encryption and decryption operations will only be carried out on String data types.

This is necessary due to data types used on the database. For example, if a number
related to the id of a project is encrypted, an error will occur when and insertion or

44	

	

deletion is performed, because the encrypted id is represented by a String and the
database type related to id’s storage is a number.

Keeping in mind the SPL of Project Management systems presented in the case study
section, we provide the following diagrams to illustrate how the projects domain
component consumes the services of the security component (see figure 26), and to detail
encryption and decryption operations. The encryption diagram (see figure 27) is related
to the creation of a new project. The decryption diagram (see figure 28) is related to
listing all registered projects.

	

Figure	
 26.	
 Concrete	
 Interactions	
 with	
 Confidentiality	
 Component

	

Figure	
 27.	
 Creation	
 of	
 a	
 project	
 considering	
 data	
 encryption

45	

	

	

Figure	
 28.	
 Retrieving	
 all	
 projects	
 considering	
 data	
 decryption	

Notice that the appearance of confidentiality in the previous diagram affects the retrieval
process of a normal time execution level (shown in figure 15) by introducing the
interaction with the PBECryptographyManager. Such interactions must be taken into
account when deriving products of the line, and are discussed in section 4.3.3.

4.2.2.2.3.3. INTEGRITY
According to figure 8, this QA affects the implementation of the authenticable Business
Entity. To promote Authentication Lockout level of this QA, we decided to apply the
Account Lockout pattern. This pattern uses a LockoutManager to protect customer
accounts from automated password-guessing attacks, by implementing a limit on
incorrect password attempts before further attempts are disallowed. Figure 29 shows the
structure of this pattern.

This pattern uses an additional Entity named Attempt, which is in charge of persist the
login attempts for each user of the system. This implies modifying the database of the
derived products when this level of QA is desired. getAttempts service retrieves the
remaining attempts of a given user. setAttempts service updates the remaining attempts
of a given user. AuthEntity refers to the BusinessEntity with its isAuthenticable attribute
set to true. To concretize the previous diagram we will use the authenticable
BusinessEntity from our case study, User. Figure 30 shows how the concretized elements
interact with each other when an authentication is required.

46	

	

	

Figure	
 29.	
 Security-­‐Integrity	
 Abstract	
 Design	

	

Figure	
 30.	
 Security-­‐Integrity	
 Concrete	
 Design

47	

	

	

Figure	
 31.	
 Authentication	
 process	
 considering	
 Integrity	
 (Account	
 Lockout)	

Notice how LockoutManager uses the EntityManager to retrieve the user from the
database. Once the user is in memory, then a password match is performed. If both
passwords (retrieved and provided) match, the user attempts are reset and the
authentication process finishes. In case the match fails, the remaining login attempts of
the user are reduced and the authentication process fails.

4.2.2.2.3.4. AUTHENTICITY
In order to promote this QA, we defined the Authorization level, which enables the
system to provide a type of access control to its functionalities. We decided to use the
Role-Based Access Control pattern, because it describes how to assign rights based on the
functionalities of users in an environment in which control of access to computing
resources like system data, is required, which accommodates to our expectations of
Authenticity. The implementation of this pattern implies modifying the database of the
system, in order to persist roles and rights involved in the configured product. Fernandez
in [100] provides the following structure (see figure 32) to implement the Role-Based
Access Control pattern.

	

Figure	
 32.	
 Role-­‐Based	
 Access	
 Control	
 Pattern

48	

	

The User and Role classes describe registered users and their predefined roles
respectively. Users are assigned to roles; roles are given rights according to their
functions. The association class Right defines the access types that a user within a role is
authorized to apply to the protection object. We decided to apply this pattern at database
level, and we provided a domain logic component to access and manage these tables. The
following diagrams depict how we adapted this pattern to be applied in our SPL (general
structure in figure 33), and an example of how to concretize this pattern (see figure 34)
with our case study. Notice that our protection object is Service, which represents each
functionality of the product, i.e. Create Project and List All Projects. Thus, every
functionality of a product has a corresponding Service object. This particular quality level
is different from the previous, given that it requires providing a user interface to manage
roles, services and their relationships to users of the system. For this reason we designed
IAuthorizationManager interface, in order to provide proper encapsulation of the services
needed to accomplish these tasks.

	

Figure	
 33.	
 Security-­‐Authenticity	
 Abstract	
 Design

49	

	

	

Figure	
 34.	
 Security-­‐Authenticity	
 Concrete	
 Design

Figure 35 illustrates how we use the Role-Based Access Control pattern to authorize the
execution of a particular functionality. To do so, we recline on authorize service
provided by AuthorizerController, which is the UI controller of authenticity matters. This
service consumes getUserServices service provided by AuthorizationManager to check
if a user is authorized to use a particular functionality (service). This diagram is an
example of interaction among presentation components (Authenticity and
ProjectPresentation).

Once we have detailed the specification of our Reference Architecture on both macro and
micro levels, we exhibit how to use it to construct the SPL of Product Management
systems presented in section 3. We assume that the Project Management SPL is
configured to promote a Medium level of Time Execution, a Data Encrypted level of
Confidentiality, a Lockout level of Integrity and an Authorization level of Authenticity.
The macro architecture of the Project Management SPL is shown in figures 36-38. It is
important to clarify that AuthenticityPresentation, Confidentiality, PersistenceContext
and JDBC components are the same for the entire product, but they are replicated due to
space limitations and ease of visualization.

50	

	

	

Figure	
 35.	
 Authorization	
 sequence	
 diagram

	

Figure	
 36.	
 Case	
 Study	
 Macroarchitecture	
 -­‐	
 Users

51	

	

	

Figure	
 37.	
 Case	
 Study	
 Macroarchitecture	
 -­‐	
 Risks

Figure	
 38.	
 Case	
 Study	
 Macroarchitecture	
 -­‐	
 Projects

Notice that risks components do not involve the JDBC component due to Risk
BusinessEntity nature as a detail of Projects (doesn’t involve ListAll contracts). The
createNamedQuery service provided by the EntityManager is used to build up queries
related to deletion operations and retrieval of related entities through the corresponding

52	

	

DAOs. To depict the microarchitecture of our case study, we only provide the class
diagrams (see figures 39 to 43) of the domain components (business logic). We omit
sequence diagrams because all of them are based on the ones shown in section 4.2.2.2;
they are adapted according to business entities characteristics implementing
functionalities.

	

Figure	
 39.	
 Case	
 Study	
 Microarchitecture	
 -­‐	
 Users	
 Component

	

Figure	
 40.	
 Case	
 Study	
 Microarchitecture	
 -­‐	
 Risks	
 Component

53	

	

	

Figure	
 41.	
 Case	
 Study	
 Microarchitecture	
 -­‐	
 Projects	
 Component

	

Figure	
 42.	
 Case	
 Study	
 Microarchitecture	
 -­‐	
 Authenticity	
 Component

54	

	

	

Figure	
 43.	
 Case	
 Study	
 Microarchitecture	
 -­‐	
 Transfer	
 Objects

These diagrams entirely depend on functionalities and quality levels configured for a
particular product, thus, we provide a mechanism to generate the class diagrams of the
domain components of a product, parting from a domain model and a quality
configuration. Such mechanism is one of our generation artifacts that are going to be
described in the following section.

To extend our approach, the product line engineer might select different catalogs from the
ones shown in this work, in order to identify varied software design patterns that leverage
the promotion of quality levels consigned in the QAs variability model. For each newly
design pattern, the product line engineer must provide the necessary design decisions
(class and sequence diagrams) to proper implement the pattern when constructing product
line members. Thus, the reference architecture must be adapted to support these newly
patterns.

4.3. PERFORM CODE GENERATION

A product line member is the result of transforming a set of functionalities contained in a
domain model along with a configuration of quality levels into source code, following the
constraints and conditions dictated by our RA. To assist the product line engineer in this
process, we provide a mechanism to automate the product generation from the SPL of
enterprise applications. To do so, we developed a Model-to-Model (M2M) transformation
that takes a domain model and a quality configuration as inputs to select the proper
designs for the product line member, according to the constraints of the RA. We also
developed several Model-to-Text (M2T) transformations [108] that use the selected

55	

	

designs to generate the proper source code. Following sections explain these
transformations.

4.3.1. CONSTRUCTING THE PRODUCT LINE MEMBER CONCRETE ARCHITECTURE

In sections above we mentioned that creation of macro and micro architecture diagrams
entirely depends on functionalities and quality levels configured for a particular product.
Thus, we provide a mechanism to generate the concrete class diagrams of the domain
components of a product line member, parting from a domain model and a quality
configuration. These concrete diagrams represent the product line member architecture.
Such mechanism is a Model-To-Model (M2M) transformation that produces a UML
diagram based on the models taken as inputs. The domain model is configured according
to the DMM, the quality configuration is specified using the QAs variability model and
the resulting UML model is created according to UML25, which is an EMF-based
implementation of the Unified Modeling Language (UML) 2.x6 OMG metamodel for the
Eclipse platform [109]. Figure 44 depicts this transformation.

	

Figure	
 44.	
 Case	
 Study	
 Microarchitecture

In order to perform the M2M transformation, we used the ATL Transformation Language
(ATL)7. ATL provides a way to produce a number of target models from a set of source
models. An ATL transformation program is composed of rules that define how source
model elements are matched and navigated to create and initialize the elements of the
target models. Transformations created using this language are domain restrictive. This
means that every rule can only access information (e.g. attributes) and operations (java
methods that must be overridden) defined in the metamodels involved in the
transformation, hence, no external libraries can be used. In order to use the utilities of an
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

5	
 http://www.eclipse.org/modeling/mdt/?project=uml2	

6	
 http://www.omg.org/technology/documents/modeling_spec_catalog.htm#UML	

7	
 http://help.eclipse.org/luna/index.jsp?topic=%2Forg.eclipse.xtext.doc%2Fcontents%2F118-­‐mwe-­‐
in-­‐depth.html	

56	

	

API we provide to manipulate the DMM (explained in section 4.3.3) and the QAs
configuration parser (XML reader also explained in section 4.3.3), we need to provide
proper operations for each object in the DMM. Figure 45 shows the operations added to
the DMM. Table 1 details the purpose of each operation.

	

Figure	
 45.	
 Modifications	
 to	
 our	
 DMM	
 to	
 handle	
 UML	
 transformation

Business
isQASelected Validates whether the provided QA id (String) is selected or not

in the quality configuration
createCryptManager Creates the PBECryptographyManager class shown in figure 25
createAuthorizationBoundary Creates the AuthorizationManager class shown in figure 33
createAuthorizationEntities Creates the Entities involved in the RBAC pattern (see figure 35)

BusinessEntity
needsDAO Validates whether the current BusinessEntity needs a DAO or not

(see section 4.2.2.2.2)
createDAO Creates a DAO class when needed
createEntity Creates the JPA Entity that represents the current BusinessEntity
createBoundary Creates the EJB Bean that represents the current BusinessEntity
isAuthenticable Validates whether a BusinessEntity is authenticable or not
configureMediumTE Creates all the classes involved in the medium level of time

execution (see figure 16)
updateBoundaryAttributes Updates the relationships of the Boundary of the current

BusinessEntity
configureSyncTE Creates all the classes involved in the high sync level of time

execution (see figure 19)
configureAsyncTE Creates all the classes involved in the high async level of time

execution (see figure 22)
configureLockoutManager Creates the classes involved in the lockout level of integrity (see

figure 29)
Table	
 1.	
 Operations	
 description	

ATL defines two different kinds of transformation rules: the matched and the called rules.
A matched rule enables to match some of the model elements of a source model, and to
generate from them a number of distinct target model elements. As opposed to matched

57	

	

rules, a called rule has to be invoked from an ATL imperative block in order to be
executed. The code fragment shown in figure 46 depicts the implementation of a matched
rule in our transformation that takes a Business object as input and generates all UML
classes for the domain components involved, e.g. Boundaries, Controls, and Entities.

	

Figure	
 46.	
 ATL	
 transformation	
 (code	
 fragment)

Lines 23 and 24 specify the rule input, which is a Business object of our DMM. Line 25
and 26 declare a variable of type Package from UML2 metamodel. Lines 28 to 31 declare
the target model element (a Package from UML2 metamodel in this case). Lines 32 to 56
conform a declarative block, indicating what to do with each entity contained in the
Business input. Line 34 creates an entity package, containing all Entities related to the
current BusinessEntity. This is an example of how a called rule is invoked. Lines 35 to 39
validate whether the Confidentiality level of Security is selected or not, in order to create
the corresponding UML classes. Same behavior occurs in lines 40 to 46, to validate the
existence of a Control. Lines 47 and 48 create the corresponding Boundary of the current
BusinessEntity. Line 49 uses one of the operations created in figure 58 to update the
relationships of the previously created Boundary, based on the Controls created before.
Lines 51 to 55 validate the selection of Authorization level of Authenticity to create the
appropriate UML classes. The rest of the transformation can be found in [110], under
co.shift.modeling.m2m/transformations/DomainMetaModel2UML2.atl.

Figure 47 depicts how to run the transformation. Notice that models folder must contain
both domain model (ProjectModel.domainmetamodelm2m) and QAs configuration
(QAsConfig.xml) before executing the transformation. Section 5 details how to create
these files. GenModel.uml file is the one that’s generated after executing the

58	

	

transformation. This file can be visualized as a tree using the eclipse default editor. The
guide in [111] shows how to construct a UML diagram parting from an .uml model,
using Papyrus plugin.

	

Figure	
 47.	
 Executing	
 the	
 ATL	
 transformation	

4.3.2. GENERAL DELEGATION STRATEGY
The concrete architecture of a product line member determines the specific design
constraints to construct develop the source code. We generate through templates, using
Model-to-Text (M2T) transformations. Templates are files that allow for readable string
concatenation [112]. Thus, any line written on a template will be transformed into source
code. In this work, we use Xtend2 as our template manager because it provides terminals
for interpolated expressions that are called guillemets «expression»,	
 enabling dynamic
construction of source code. These expressions support the use of conditionals, loops and
declaring variables. An example of how a template is declared is shown in figure 48.
Code on the left is the template declaration, which is identified by triple single quotes (''').
Notice that a class can define more than one template using the word def. Code on the
right side is the result of executing the template on the left, which uses recursion to create
a Parent class and its child. More information about using templates with Xtend2 can be
found in [112]. It is important to say that each template provides the definition for a
particular class, resulting in a one to one relationship.

	

Figure	
 48.	
 Xtend2	
 Template	
 example

59	

	

We defined templates for our SPL. First, we identified two main groups of templates:
kernel and contributed. Former contains the templates that generate common code, that
is, code that every product of our product line must have, i.e. Boundaries and Entities for
each Business Entity of our DMM. Latter groups the templates that are particular to each
quality level, for instance, Medium level of Time Execution requires a template to
generate the FLR interface and another one for its implementation. Figure 49 illustrates
these groups.

	

Figure	
 49.	
 Template	
 groups

We refer to the code contained in a template as rules, given that such code determines
how the source code of a class will be organized and generated. Parting from our
Reference Architecture (Section 4.2.2) we can conclude that the generated code is
modified according to the level of quality selected for each quality attribute of the QAs
variability model. For example, the boundary implementation of the Project’s domain
logic component must define a relationship with IProjectBasicFLR interface when a
Medium level of Time Execution is selected (see figure 17). Such relationship changes
when Time Execution level is different. These modifications represent changes to the
generated source code; hence, it is important to detect the specific points of the classes
(source code) that might be affected. Figure 50 presents the structure of a Java Class,
which in our case is the representation of the source code.

60	

	

	

Figure	
 50.	
 Java	
 class	
 sections

The sections highlighted in the figure 50 are the points that might be modified by the
selection of a particular level. For example, relating ProjectManager with
IProjectBasicFLR interface (see figure 17) implies importing the package where the
interface is located, declaring the attribute of type IProjectBasicFLR to access its
services, and modifying the methods that require the services provided by this interface.
Notice that these sections are present in every Java class, so modifications of a quality
level might affect DomainLogic classes as well as WEB classes, i.e. UIController. To
handle the quality modifications (contributions from now on) we provide the interface
shown in figure 51.

	

Figure	
 51.	
 Contribution	
 interface

The services provided by this interface refer to the sections where a quality level might
contribute to the source code. Service in line 5 represents a contribution to the contract
declaration of a domain logic component, i.e. listAllProjects contract has two parameters
when High Sync level of Time Execution is selected and none when any other level of this

61	

	

QA is selected. Service in line 7 represents a contribution to the implementation of a
contract, i.e. implementing the retrieval of all Projects or delegating the retrieval handling
to a FLR. Line 9 is a contribution to the imports section of a domain component, i.e.
importing the package where IProjectBasicFLR is located. Line 11 represents a
contribution to the attributes section of a domain component, i.e. declaring an attribute of
type IProjectBasicFLR to access its services. Line 13 is a particular contribution that
executes the templates related to a particular quality level, i.e. executing
PBECryptographyTemplate when Confidentiality level is selected. Lines 15, 17 and 19
are similar to contributions of line 7, 9 and 11, but they modify web classes.

Our approach states that every quality level (variant) of the QAs variability model has to
create a class to concretize the contribution interface, in order to determine its
contributions to the source code. Notice that the services provided by this interface take a
variable array of parameters, enabling each quality level to override them as needed.
Each service returns the code fragment (represented as a string) that is going to be
concatenated to the corresponding template. Figure 52 illustrates how the QAs variability
model is related to the contributions (concrete classes) to source code. Code fragment
shown in figure 53 illustrates how Normal level of Time Execution implements the
contributeToBusinessInterface of the Contribution interface.

	

Figure	
 52.	
 Contribution

62	

	

	

Figure	
 53.	
 Concretization	
 example	
 of	
 Contribution	
 interface

Figure 53 shows the concrete contribution of normal time execution variant to the source
code. It casts the parameters data to its proper type and uses it to build the service
contract of the related ListAll operation. It is important to say that not all services of the
Contributor interface must be overridden, only the ones needed. Parting from
Contributor interface we detected two types of contributions:

• Extension. Consists in contributing a fragment of source code to a Template,
which is necessary to the code that’s going to be generated. Services in lines 5, 7,
9, 11, 15, 17 and 19 of figure 53 are of this type.

• Creation. Consist in executing different templates to generate source code related
to a particular quality level, involving templates outside the kernel. Service in line
13 of figure 53 is a creation contribution.

4.3.2.1. CHALLENGES OF CONSIDERING QUALITY LEVELS IN CODE GENERATION
A template implementation consists of the inherent code of the class it represents, e.g.
parameterized query of data retrieval to use a FLR, and the code contributions provided
by the concrete Contribution classes of each quality level. In order to include these
contributions in the templates declaration, we have to deal with the following challenges:

1. Define a strategy that enables considering quality variations when implementing a
template.

2. Dealing with conflicting situations among quality levels.

To deal with the first issue, the straightforward strategy is to use as many conditionals as
needed to evaluate the presence of a particular level of quality when implementing a
particular section of a template. This strategy has the following drawbacks: Including a
conditional to validate the presence of each quality level that needs to be evaluated in a
particular section results in several IF	
 ELSE sentences, causing high coupling and code
difficult to understand and maintain. Thus, our strategy relies on delegations. This
requires the templates to know the specific point where a contribution is needed. Once
the points are identified, the template delegates the code declaration to the required
concrete class, indicating the specific contribution to be added (see figure 50). The
concrete class is then responsible for including its contribution (code fragment) to the
point specified by the template. Figure 54 illustrates this process.

63	

	

	

Figure	
 54.	
 Delegation	
 strategy

Delegation strategy shown in figure 54 suffers from several conflicting situations among
quality levels (second challenge), given that configuring a product with several quality
levels might cause the following tradeoffs:

1. The selection of two quality levels might cause and exclusion relationship
(exposed in section 4.1.2.1.1), which denotes that two QAs cannot coexist,
because the selection of one entirely inhibits or contradicts the other. This
particular tradeoff is not considered in our implementation due to its absence in
our QAs model.

2. Selecting two quality levels might impact the same section of a template. For
example, both Time Execution and Confidentiality levels modify the
implementation of a ListAll operation, given that all data retrieved must be
unencrypted before displaying it to the final user. This implies that the
contribution required on a template is composed of several contributions provided
by different concrete Contributions (classes implementing Contribution
interface). Thus, it is important to develop a strategy that enables these two levels
to provide their contribution in a synergic manner. Figure 55 illustrates this
conflict.

	

Figure	
 55.	
 Conflict	
 resulted	
 from	
 two	
 or	
 more	
 contributions	
 to	
 a	
 same	
 template	
 section

Dealing with the conflict shown in figure 55 can be solved in two ways. The first one
considers ordering the contributions, i.e. a contribution must be performed prior the other
one. This order depends on the context of the contributions. For example, both Time
Execution and Confidentiality levels modify the implementation of a ListAll operation.

64	

	

Hence, the contribution related to time execution (retrieval of data) must be executed
prior the confidentiality contribution (data unencrypting), given that retrieved data is
needed to be unencrypted. Once the order is set, the delegation strategy shown in figure
54 must be extended, in order to be use by templates and concrete Contributions
(classes). Thus, the template that requires the contribution delegates the code declaration
to the concrete Contribution (class) whose contribution must be performed first. Then,
this concrete class delegates the code declaration to the following concrete Contribution
(class), according to the stated order. This pattern may be replied as many times as
needed. Figure 56 depicts this solution.

	

Figure	
 56.	
 Delegation	
 strategy	
 based	
 on	
 contributions	
 ordering

Second solution is needed when ordering the contributions of concrete Contribution
(classes) doesn’t result in a coherent code fragment, but the resulting product line
member must contain both quality levels. This solution demands creating a new concrete
Contribution class. This new class must provide an implementation that considers both
quality levels, in order to relate them in a synergic manner. This decision requires a
design stage of the interactions between related quality levels prior its implementation,
plus a validation process executed within the generation that triggers the use of the newly
Contribution when these quality levels are present.

4.3.3. CONCRETE GENERATION STRATEGY

Following sections describe our approach to concretize this delegation strategy. We
created three groups of kernel templates, one for the web layer, one for the domain logic
and another one for the database. Based on the Reference Architecture in section 4.2.2,
there are several contributed templates, depending on the quality attribute and level.
Figure 57 depicts the group of templates we created for generating our SPL product
members. Table 2 describes each one of the templates.

65	

	

4.3.3.1. CONSIDERING QUALITY CONTRIBUTIONS TO CODE GENERATION

	

Figure	
 57.	
 Templates	
 involved	
 in	
 our	
 generation	
 process	
 and	
 their	
 grouping	

co.shift.tempates.database.basic
InsertsScriptTemplate Declares all the default inserts to the database that are needed

when a product is configured, that is, a default user. If the
Authorization level is selected, it creates an admin role and
the entire set of services based on the selected functionalities
of a product.

MERScriptTemplate Creates the database script to persist the information related
to the derived product. The declared tables and relationships
entirely depend on the functionalities configured in the
domain model of a product.

co.shift.templates.ejb.basic
BoundaryInterfaceTemplate Specifies the rules for creating the boundary interface of

each BusinessEntity. Services names, params and return
types depend on the configuration given for a particular
domain model.

BoundaryImplInterfaceTemplate Provides the rules for implementing the boundary interface
of each BusinessEntity. It also evaluates selection of
particular quality levels, in order to properly adapt to the
designs provided in our RA.

66	

	

DAOInterfaceTemplate Specifies the rules for implementing DAO interfaces in case
they are needed (See section 4.2.2.2.2). Services names,
params and return types depend on the configuration given
for a particular domain model.

DAOImplInterfaceTemplate Provides the rules to handle the implementation of the
declared DAO interfaces. Evaluates the selection of
Confidentiality level when implementing each service.

DTOTemplate Provides the rules to implement the corresponding DTO for
each BusinessEntity configured in a particular domain model.

JPATemplate Provides the rules to implement the corresponding Entity for
each BusinessEntity configured in a particular domain model.

JPAPKTemplate Needed to handle addition and deletion of detail
BusinessEntities to a master, it declares the rules to manage
relationships among JPA Entities without breaking GRASP
patterns (high cohesion and low coupling).

JPAPKEncapTemplate Contains the rules to encapsulate the relationship of two
Entities into a JPA Entity, so it can be used as a primary key
to perform addition and deletion of detail BusinessEntities.

PersistenceTemplate Provides the declaration of all the involved JPA entities in a
particular product, so they can be manipulated by the created
EJB components.

co.shift.templates.web.basic
ProcessContributorTemplate Specifies the ProcessContributor interface, which provides a

service to be used when the implementing Controller
contributes to a particular process of another Controller, for
instance, ConfidentialityController contributes to
ProjectController by encrypting the data when a project is
created.

UIContributorTemplate Specifies the UIContributor interface, which provides a
service to be used when the implementing Controller
contributes to the View managed by another Controller, for
instance, ProjectController contributes to MainController by
adding a menu item to access project management.

AbstractControllerTemplate Provides the default attributes and behavior for the UI
Controllers. Every Controller must have a collection of UI
Contributors and another one of Process Contributors.

BeanLocatorTemplate Specifies the implementation of the BeanLocator pattern
[39], to deal with EJBs location.

GlobalJNDITemplate Provides the implementation of GlobalJNDI class, which
uses a Builder pattern [34] to make easier the construction of
location strings used by the BeanLocator.

ContentPaneTemplate Contains the implementation of the main view panel to
display the Views of a product.

FormTemplate Provides the rules for implementing the View of each
BusinessEntity configured in a particular domain model.
This template is only used by master BusinessEntities.

PopUpMasterDetailTemplate Provides the rules for implementing a View to relate a detail
BusinessEntity to a master BusinessEntity.

WebControllerTemplate Provides the rules for implementing the UIController of each
BusinessEntity configured in a particular domain model. It

67	

	

must consider selection of time execution levels to properly
implement ListAll operations.

LoginControllerTemplate Provides the implementation of the Controller that handles
login events of a product.

MenuPaneTemplate Contains the implementation of the navigation menu that is
used by the product to browse functionalities.

PopUpMasterTemplate Provides the rules for implementing the View of the detail
BusinessEntities configured in a particular domain model.

RegistryTemplate Provides the implementation of the Registry class, which is
used to store the session objects of a particular product when
a user is logged in, i.e. user name.

UIControllerTemplate Provides the rules for implementing the main controller of a
particular product. This controller configures the contributors
(UI and/or Process) of each Controller of the product,
initializes the navigation menu and displays the login View.

UITemplate Contains the implementation of the entry point of the
application. This class initializes the product’s content pane
and menu pane and invokes the UIController.

LoginFormTemplate Provides the implementation of the View that displays the
login form of a product.

co.shift.templates.database.contributed.authenticity&integrity
AuthenticatorScriptTemplate Provides the implementation of the database tables needed

when the Authorization level of Authenticity is selected
(Roles, Services, Rights).

LockoutScriptTemplate Provides the implementation of the database table
“Attempts” when the Lockout level of Integrity is selected.

co.shift.templates.web.contributed.syncTE
ListUpdaterTemplate Contains the implementation of the ListUpdater required

when the High Sync level of Time Execution is selected. See
figure 19.

co.shift.templates.ejb.contributed.confidentiality
PBECryptographyTemplate Provides the implementation of the

PBECryptographyManager, which is needed to handle
encryption/decryption of data when Confidentiality level of
Security is selected.

co.shift.templates.ejb.contributed.fastayncTE
AsynWorkerTemplate Provides the rules for implementing the AsynWorker class,

which defines the task that is going to be executed in parallel
when the High Async level of Time Execution is selected.

ParallelizerInterfaceTemplate Specifies the rules for creating the Parallelizer interface of
each BusinessEntity when the High Async level of Time
Execution is selected.

ParallelizerImplTemplate Provides the rules for implementing the Parallelizer
interface of each BusinessEntity.

co.shift.templates.web.contributed.authenticity
AuthorizerControllerTemplate Provides the rules for implementing the Authorizer controller

of a particular product. This controller manages the tables
created when implementing the RBAC pattern, including
relating users with roles.

AuthorizerFormTemplate Provides the rules for implementing the View that enables

68	

	

managing roles and services and relating them to users.
co.shift.templates.ejb.contributed.mediumTE

FLRInterfaceTemplate Specifies the rules for creating the FLR interface of each
BusinessEntity when the Medium level of Time Execution is
selected.

FLRImplInterface Provides the rules for implementing the FLR interface of
each BusinessEntity.

co.shift.templates.ejb.contributed.fastsyncTE
OptimizedFLRInterfaceTemplate Specifies the rules for creating the OptimizedFLR interface

of each BusinessEntity when the High Sync level of Time
Execution is selected.

OptimizedFLRImplInterface Provides the rules for implementing the OptimizedFLR
interface of each BusinessEntity.

co.shift.templates.ejb.contributed.authenticity&integrity
AttemptJPATemplate Provides the mapping of the database table “Attempts” to a

JPA Entity when the Lockout level of Integrity is selected.
AuthJPATemplate This class contains all the templates needed to map the

database tables involved in the RBAC pattern to JPA Entities.
AuthTOTemplate This class contains all the templates needed to map the

database tables involved in the RBAC pattern to DTOs.
LockoutTemplate Provides the rules needed to implement the

AccountManager, which is needed to control the number of
login attempts performed by each user account when the
Lockout level of Integrity is selected.

AuthInterfaceTemplate Specifies the rules for creating the IAuthorizationManager
that provides the operations for managing Roles, Rights and
Services when the Authorization level of Authenticity is
selected.

AuthImplTemplate Provides the rules for implementing the
IAuthorizationManager interface.

Table	
 2.	
 Templates	
 Description

Figure 58 show the static class ImplMapping, which assigns a unique id for each quality
level and relates each of them with their corresponding Contributor implementation
(performMapping method). For example, the id r_1_3_4 identifies the Normal level of
Time Execution, and its Contributor implementation is the NormalTE class. ImplMapping
class also provides a static method that enables obtaining the Contributor of a particular
quality level given its id (lines 37 to 39).

69	

	

	

Figure	
 58.	
 Ids	
 for	
 each	
 quality	
 level	
 concretization	

Once we have identified each quality level, we need to know which of them are selected
in a particular configuration of the QAs variability model. To manage configurations of
our quality model we use a tool that enables creating and configuring features models
online (S.P.L.O.T.). The use of this tool is explained in section 5.2, but we are going to
anticipate that an XML containing the quality configuration is generated. Hence, we
developed a parser that takes this XML as input and populates a HashMap with the
Contributors of the selected quality levels. This is possible because the ids that we used
in figure 58 are the same as the ones contained in the generated XML, thus, every time a
quality level is selected, its id can be used to get the related Contributor using the static
method getContributorImpl provided by ImplMapping.

Next step after identifying the selected Contributors of a particular quality configuration
is to develop a mechanism that allows accessing these objects (Contributors) to use their
overridden functionalities (implementation of Contributor contacts) on demand. We
developed an API (DomainCodeUtilities) that provides a particular function (among
others) named extendContribution that takes the quality level id, the identifier of the
section where the contribution is needed and additional data (variable parameters) to
generate a contribution to the invoking template. Such function has a static modifier,
thus, no instantiation is required to use it. Code fragment shown in figure 59 illustrates
how the BoundaryImplTemplate uses this function to include the contribution generated
by a Time Execution level.

	

Figure	
 59.	
 Example	
 of	
 using	
 extendContribution	
 function

Code in figure 59 illustrates an extension contribution with the following particularities:
The first parameter contains the id of the Time Execution attribute (see figure 59) and not

70	

	

the id of a particular level (variant). When this method finds this expression, it will
execute the contributions from all quality levels of the given QA. In this case, only one
contribution will be executed (the selected level in the QA configuration) because Time
Execution levels are exclusive (see figure 7). The second parameter identifies the section
where the contribution is needed; in this case, the contribution will be included in the
methods implementation section. There is one id for each of the eight contribution
sections (see figure 60). The remaining parameters are information that the particular
contribution needs to be executed. In this case, the contribution needs the current contract
and BusinessEntity to work.

	

Figure	
 60.	
 Identifications	
 for	
 each	
 contribution	
 section

To illustrate how this strategy overcomes the challenges presented in section 4.3.2.1, lets
see how we managed the contributions generated by a Normal Time Execution level and a
Data Encrypted level of Confidentiality when a ListAll contract appears. There are two
possible outcomes when two quality levels contribute to the same section of a template:
the first one is the possibility of ordering the execution of the contributions involved, the
second one is to create a new Contributor mixing both quality levels due to their inability
to coexist. Considering that the Normal level provides the implementation of the ListAll
contract and that Data Encrypted level provides decryption attributes retrieved of String
type, we can establish an order where decryption occurs within the implementation of
data retrieval. To clarify this, figure 61 shows both contributions to Project’s domain
component, individually.

If Confidentiality contribution is located before Time Execution contribution, an error will
occur because the projectTO object used by the former has not been declared.
Conversely, if these contributions are inverted (Time Execution first and Confidentiality
second) an error will still be present cause the code generated by the latter is not inside a
method declaration, so it cannot be compiled. To make this work, we decided to include
Confidentiality contribution within Time Execution contribution, particularly between
lines 10 and 11 of figure 61. This way both codes are properly connected and can be
compiled as one. Figure 62 shows the mixed contributions.

71	

	

	

Figure	
 61.	
 Contributions	
 to	
 Project's	
 domain	
 component	
 (Data	
 Encrypted	
 and	
 Normal	
 Time	
 Execution)	

	

Figure	
 62.	
 Mixed	
 Contributions	
 to	
 Project's	
 domain	
 component	
 (Data	
 Encrypted	
 and	
 Normal	
 Time	
 Execution)

Solution shown in figure 62 implies using the extendContribution method in a kernel
template, as well as in a particular Contribution. Figure 63 illustrates the implementation
required in templates and concrete Contributions classes to obtain the result shown in
figure 62. Notice how the extendContribution method is called inside the for declaration
of NormalTE. This strategy avoids declaring several conditionals to evaluate selected
quality levels (for example declaring one IF to check the existence of every level of Time
Execution and then include a nested IF inside each of them to validate the selected
Confidentiality level). Hence, it prevents high coupling and simplifies the code needed to
consider quality variations, which promotes its maintainability and scalability.

Using the extendContribution method with and id of a quality level that has not been
selected produces no changes on the invoking template. Thus, this property makes
considering quality variation a little bit easier, for example, Data Encrypted level of
Confidentiality requires every Boundary to always have a relationship with the

72	

	

PBECryptographyManager. This is translated into a contribution to the
BoundaryImplTemplate in its attributes section, where the relationships are declared. So,
we can easily use the following code to handle this situation, knowing that if Data
Encrypted is selected the proper contribution will occur, and if its omitted from the QAs
configuration, no code related to the PBECryptographyManager will appear in the
resulting source code. Figure 64 illustrates this situation.

	

Figure	
 63.	
 Example	
 of	
 delegating	
 contributions	
 among	
 Templates	
 and	
 Contributors

73	

	

	

Figure	
 64.	
 Resulting	
 contributions	
 when	
 an	
 attribute	
 is	
 selected	
 and	
 when	
 it	
 isn’t

4.3.3.2. CODE GENERATION ENGINE
We developed an engine that takes as input the templates of section 4.3.3.1, a domain
model and a quality configuration to produce the source code of a particular product line
member. To do so, we decided to use the Modeling Workflow Engine 2 (MWE2), which
is a declarative, externally configurable generator engine. This technology enable us to
declare a workflow that takes a domain model (according to our DMM) as input, to take
it through a series of transformations (M2T in this case) provided by our templates
(Xtend2 classes) to produce source code. Such workflow works as director, where
decisions about which templates must be executed are taken, based on the information
provided in the domain model. We have developed a tutorial showing how to create a
MWE2 workflow to perform model-to-model (M2M) transformations, as well as model-
to-text (M2T) transformations. Thus, in this work we only provide the workflow
declaration (see figure 65) and some details on how the transformations are performed.

	

Figure	
 65.	
 Generation	
 Workflow

Line 8 in figure 65 contains the path where the generated source code will be stored. Line
9 provides the path where the models (domain and QA) are located. Lines 16 to 18 clean

74	

	

the target path before generating the code. Lines 20 and 22 initialize some auxiliary
classes that are needed for executing the workflow. Lines 24 to 30 declare a Reader
object that seeks for a domain model in the specified path (modelPath) and uses the
DomaCodeSetup class to read its content and load it into memory, using the model id.
Lines 32 to 38 use the model id to read the content from memory and to perform the
necessary transformations to generate the source code, which is going to be stored in the
targetDir path. The DomainCodeSetup class used in line 33 internally invokes the
DomainCodeGenerator class, which is the one that overrides the behavior of the code
generation, acting as the main thread that organizes the invocation of the Templates. This
class has access to the domain model that was loaded into memory, and to the services
provided by an object of type IFileSystemAccess, which enables executing the templates
to generate the source code. Code fragments shown in figures 66 and 67 depict the
implementation of the DomainCodeGenerator

	

Figure	
 66.	
 Using	
 our	
 API	
 to	
 enable	
 quality	
 handling

First thing to do is perform the mapping discussed in figure 58. Line 39 in figure 66
accomplishes this task. Line 41 uses our provided API to initialize the map that contains
the selected Contributions provided in the configuration of QAs. Notice that this line
invokes the methods that are in charge of parsing the XML that contains the
configuration of quality levels (generated by S.P.L.O.T), and loading this info into
memory, so it can be accessed to perform proper rules using the strategy explained in
previous the section. The Resource parameter in line 38 represents the domain model that
was loaded into memory by the workflow.

75	

	

	

Figure	
 67.	
 DomainCodeGenerator	
 implementation

Line 46 traverses all contents from the domain model in memory (input Resource). Lines
47 to 51 identify the current content being traversed as a Business, so its name is stored in
the appName variable, which is used in the remaining lines. Lines 52 to 92 deal with the
appearance of a BusinessEntity. According to rule 2 in section 4.2.2.1.1, every
BusinessEntity must have a domain component and a GUI one. Thus, lines 62 to 81
execute the templates that every domain component must have, that is, a DTO, a
Boundary Interface and its implementation, an Entity and the possible appearance of a
DAO. Notice how the fsa object of type IFileSystemAccess is used to execute the
corresponding template. For example, lines 62 and 63 execute the DTOTemplate, where
the first parameter of generateFile operation is the path where the generated class will be
located, and the second one invokes the template named generate in the DTOTemplate
class (remember that an Xtend2 class can define multiple templates). Lines 83 to 91
execute the templates related to the web component. Thus, FormTemplate is only
executed when the current BusinessEntity is a master (see table 2), while every
BusinessEntity must provide a UIController, which is done by lines 88 to 90.

The rest of this class executes the kernel templates for the web layer, as well as the kernel
templates related to the database generation. Hence, the DomainCodeGenerator is in
charge of executing all kernel templates (see figure 57). The execution of the contributed
templates is performed through the delegation strategy of section 4.3.2, using the
CONTRIBUTE_TO_GENERATION modifier. The following code provides an example
of a contribution (creation type) using this modifier. Notice that the fsa is passed as a
parameter to handle the templates execution in the corresponding Contribution class, e.g.
NormalTE.

	

At this point, we are able to produce the source code for a product based on a domain
model and a QAs configuration. However, this code cannot be executed as an application
without the proper packaging. To handle this issue we decided to use Maven, which is a
software project management and comprehension tool that enables managing project’s
build [113]. We decided to package the generated source code in the following projects:

• co.shift.root – A wrapper project to encapsulate all generated projects related to a
product.

• co.shift.ear – A project that encapsulates all domain logic components, so they
can be used by the corresponding web components.

• co.shift.ejb.api – A module that contains the interface declarations of all domain
logic components. It also packages the DTOs definitions to be used as utilities by
the domain components.

76	

	

• co.shift.ejb – A module that contains the entire implementation of the domain
logic components (Boundaries, Entities, DAOs).

• co.shift.web – A project that contains the entire implementation of the web (GUI)
components of the product.

We followed the tutorial presented in [114] to create each maven project using the
corresponding maven command, and we encapsulated all these tasks into a single
operation in our DomainCodeUtilities API named runScript. This method executes the
following steps, after the source code generation has been completed:

1. Creates an .sh file (executable bash file) for each project, which contains the
corresponding maven command to generate the desired project.

2. Composes a generation script that executes the generated files in the previous
step.

3. Executes the created script in step 2. This execution is performed using the
Terminal in mac systems; thus, it isn’t compatible with Windows PCs.

4. Waits for step 3 until it finishes its execution.
5. Modifies the .pom file of each generated project to include the corresponding

dependencies, e.g. eclipselink for JPA, vaadin for web components.
6. Copies the generated source codes into their corresponding maven project, i.e.

boundary interfaces go into co.shift.ejb.api project.
7. Mixes all generated database scripts (kernel script, Lockout script and

Authenticator script) into a single script. This script is intended to be executing
on a MySQL database engine.

It is very important to invoke runScript method in the implementation of
DomainCodeGenerator class, so the process above can be executed. This line declaration
is show in the figure below. Following sections provide an example of how to run the
workflow (see figure 55) to generate the code of a product.

Note: runScript operation uses the constant GENERATION_DIR located in
DomainCodeUtilities class to indicate the path where the generated maven projects will
be located.

5. TECHNOLOGIES INVOLVED IN PRODUCT LINE MEMBERS DERIVATION
In order to build a product line member, we developed a configuration process that
follows an MDE generation strategy, which consists of three steps: 1) a Functional
Configuration describing the functionalities (use cases) to include in the product line
member, 2) a Quality Configuration describing the expected levels of QAs, and 3) the
execution of the Generation Engine that takes both configurations as inputs to derive the
desired product. Figure 68 shows this process. In the following we provide more detail of
these steps.

77	

	

	

Figure	
 68.	
 Product	
 Derivation	
 Process	

5.1 CREATE A MODEL BASED ON THE DMM
To handle model creations based on the DMM we used the Eclipse Modeling Framework
(EMF)8, which is a framework and code generation facility for building tools and other
applications based on a structured data model. From a model specification described in
XMI, EMF provides tools and runtime support to produce a set of Java classes for the
model, along with a set of adapter classes that enable viewing and command-based
editing of the model, and a basic editor.

We created an ECore metamodel to describe the DMM (see figure 5). To be able to use
this metamodel as a base for creating models, we developed an eclipse plugin that can be
downloaded from [110]. Such plugin contains the DMM Ecore file; the MWE2 workflow
explained in section 65; all templates exposed in section 4.3.3.1 and our
DomainCodeUtilities API. In order to run our plugin an eclipse IDE with all modeling
plugins is required (can be downloaded from http://eclipse.org/modeling/downloads/).

After downloading the eclipse for modeling and our plugin, the following projects must
be imported: co.shift.modeling, co.shift.modeling.edit and
co.shift.modeling.editor. Now, a new instance of eclipse that recognizes our plugin
must be launched. This can be done by pressing right click over
co.shift.modeling.edit project and selecting Run As/Eclipse Application option.
Once the new instance starts, we must import the co.shift.modeling project into the
new workspace. After performing these steps, the recently launched instance of eclipse
should look like figure 69.
	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

8	
 http://eclipse.org/modeling/emf/	

78	

	

	

Figure	
 69.	
 Generation	
 Plugin	
 content	

At this point we are ready to configure models from the DMM. All we need to do is right
click the models folder and select New/Other option (see figure 70). A wizard will popup,
thus, we need to browse the displayed options until we find a folder named “Example
EMF Model Creation Wizards”. This folder should contain an item named
“Domainmetamodel Model”, which represents our DMM.

	

Figure	
 70.	
 Using	
 our	
 DMM	
 to	
 create	
 Domain	
 Models

After selecting this option, we provide the model name and press “Next”. Here we select
Business as the model object (indicating the root element of the model) and press
“Finish”. A tree view editor will display the Business object we selected. This view
enables creating a model according to the constraints of the DMM. Following our case
study in section 3, we provide the domain model in figure 71 to meet the functionalities
of the SPL for Project Management systems.

79	

	

	

Figure	
 71.	
 Domain	
 Model	
 of	
 our	
 Case	
 Study

Each item of the figure 71 provides some properties (according to its type in the DMM)
that must be set. For example, each BusinessEntity must indicate its name and weather it
is authenticable or not; each Multiple Association requires setting its name and its related
BusinessEntity. Figure 72 shows an example of these properties.

	

Figure	
 72.	
 Properties	
 of	
 Domain	
 Model	
 elements

Once these steps are done, a domain model has been created successfully. An important
restriction to highlight is that in order to use the created model in the workflow execution,
the newly model must be named “ProjectsModel.domainmetamodel”. This is due to
workflow’s implementation, which uses this name to identify the domain model that is
going to be used as an input in the generation process.

5.2 SELECT A CONFIGURATION FROM THE QAS VARIABILITY MODEL
To manage the creation and configuration of the QAs variability model, we decided to
use the online tool S.P.L.O.T. [115]. This tool enables editing, debugging, analyzing,
configuring, sharing and downloading feature models instantly. They provide an online
feature model repository where every created model using this tool is saved. We followed
the QAs variability model exposed (see figure 7) to create the QAs variability model
using S.P.L.O.T. We named our model SHIFT QAs. One of the most interesting facilities
that S.P.L.O.T. provides is the ability of generating feature model configurations parting
from the feature models stored in the online repository. Figure 73 depicts how the QAs
variability model looks when it is about to be configured.

80	

	

	

Figure	
 73.	
 QAs	
 model	
 using	
 S.P.L.O.T.

One of the utilities provided by S.P.L.O.T. is displaying a percentage of completion each
time a feature is selected/deselected. A valid configuration is one that reaches 100%.
Entire management of the constraints inherent to feature models e.g. inclusive/exclusive
groups, optional/mandatory features, is handled by the tool. The green icon is used to
select a feature; the red x is used to do the opposite. Assuming that we want a product
with a High Sync level of Time Execution, a Data Encrypted level of Confidentiality and
with both Authorization and Authentication Lockout levels selected, the quality
configuration has to be the one shown in figure 74.

	

Figure	
 74.	
 QAs	
 model	
 Configuration

Notice that selected features are highlighted in orange, while the remaining ones
(unselected) have a strikethrough in their names. There is also a table displaying the
selected features only. Once a valid configuration is selected (100%), it can be exported
to a CSV file or an XML. In our case, we use the second option. To use the exported
XML configuration in our generation engine, this file must be located in the models
folder of our plugin (see figure 69), and its name must be set to “QAsConfig.xml”.

81	

	

5.3 EXECUTE GENERATION WORKFLOW
After having placed both quality configuration and domain model in the models folder of
our plugin (see figure 69), the remaining step is to run the MWE2 workflow (see figure
65). To do so, locate the workflow in src/co.shift.generators.workflows package,
right click the WF.mwe2 file and select “Run As/MWE2 Workflow” option (see figure 75).
This will generate the packages explained in section 4.3.3.2.

	

Figure	
 75.	
 Generation	
 Workflow	
 Execution

Once the workflow finishes its execution, the product is ready to be deployed in an
application server like Glassfish9 or JBoss10. Two things must be taken into account when
deploying the application: first, the generated database script must be run (in a MySQL
database engine) before performing any further actions. The script is located in:
	

~/co.shift.root/co.shift.web/src/co.shift.<<appName>>.web.database.	
 	

	

Second, the connection pool and JDBC resources must be configured using the exact
same name assigned to the Business in the domain model when deploying the app to a
server.

6. CONCLUSIONS
This work proposes an approach to support quality attributes variability and enables
relating functionalities with the quality levels they promote. Instead of designing and
developing additional architectural elements to support multiple quality attributes, it is

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

9	
 https://glassfish.java.net	

10	
 http://jbossas.jboss.org	

82	

	

focused on creating an initial Reference Architecture and adapting that architecture
according to a selection of quality levels.

We provided a domain metamodel to define the functional scope of product line
members. We also created a QAs variability model to indicate the quality attributes
(performance and security) that are going to be addressed when configuring products,
specifying the quality scope of product line members. We related both domain
metamodel and QAs variability model using a coarse-grained approach, indicating that
each desired quality level on a target product has to be promoted by every component of
such product. Software design patterns promote the configured quality levels and are
documented through the Reference Architecture. Finally, we provide tool support to
automate derivation of products once a domain model and a configuration of quality
attributes have been created. Such tool maps the reference architecture into several
templates that contain the logic needed to implement possible configuration decision.
Quality domain metamodel and transformations to derive products can be reused in
several SPLs that share the same interests (e.g. enterprise applications).

As future work, we intend to extend our quality model to consider the excludes
relationship to capture conflicting quality attributes, in order to provide a proper
mechanism to handle these situations in our tool. We will also adapt our packaging script
(see section 4.3.3.2) to be supported on Windows PCs.

7. BIBLIOGRAPHY
	

[1] K M Krandthi, B M Konda, K T Reddy, B R Kiran, and A Vindhya, "A Systematic
Mapping Study on Value of Reuse," International Journal of Computer Applications, vol.
34, 2011.

[2] K C Kang, S G Cohen, J A Hess, W E Novak, and A S Peterson, "Feature-oriented domain
analysis (FODA) feasibility study," CARNEGIE-MELLON UNIV PITTSBURGH PA
SOFTWARE ENGINEERING INST, 1990.

[3] M Voleter and I Grohen, "Product line implementation using aspect- oriented and model-
driven software development," SPLC, pp. 233-242, 2007.

[4] O Regan, "A Practical Approach to Software Quality," Springer-Verlag, 2002.
[5] M Wieczorek and D Meyerhoff, "Software Quality: State of the Art in Management,

Testing, and Tools," Springer, 2001.
[6] B B Anderson, A Bajaj, and W Gorr, "An estimation of the decision models of senior IS

managers when evaluating the external quality of organizational software," The Journal of
Systems and Software, pp. 59-75, 2002.

[7] B W Boehm et al., "Characteristics of Software Quality," American Elsevier, 1978.
[8] A C Gillies, "Software Quality: Theory and Management," Chapman & Hall, 1992.
[9] W E Perry, "Effective Methods of EDP Quality Assurance," QED Information Sciences,

Wellesley, Mass, 1987.
[10] Sonia Montagud and Silvia Abrahao, "Gathering Current Knowledge about Quality

Evaluation in Software Product Lines," SPLC, pp. 266-283, 2009.
[11] V Myllärniemi, T Männistö, and M Raatikainen, "Quality Attribute Variability within a

83	

	

Software Product Family Architecture," Second Inernational conference on Quality of
Software Architecture QoSA, 2006.

[12] G Halmans and K Pohl, "Communicating the variability of a software-product family to
customers," Journal on Software and Systems Modeling, pp. 15-36, 2003.

[13] E Niemelä, "Architecture Centric Software Family Engineering," Product Family
Engineering Seminar, 2005.

[14] H Zhang, S Jarzabek, and B Yang, "Quality Prediction and Assessment for Product Lines,"
Springer, 2003.

[15] G Zhang, "Quality Attributes Assessment for Feature-Based Product Configuration in
Software Product Line," Software Engineering Conference (APSEC), 2010.

[16] J Bartholdt, M Medak, and R Oberhauser, "Integrating Quality Modeling with Feature
Modeling in Software Product Lines Joerg," Fourth International Conference on Software
Engineering Advances Integrating, 2009.

[17] Mario Barbacci, Thomas H Longstaff, Mark H Klein, and Charles B Weinstock, "Quality
Attributes, Technical Report," CMU/SEI-95-TR-021, 1995.

[18] Microsoft. (2008, Jan.) patterns and practices: Application Architecture Guide 2.0.
[Online]. http://apparchguide.codeplex.com/wikipage?title=Chapter%207%20-
%20Quality%20Attributes

[19] L Bass, P Clements, and R Kazman, Software Architecture in Practice. Boston: Addison-
Wesley Professional, 2012.

[20] M Barbacci, M Klein, T Longstaff, and S Weinstock, "Quality Attribute Workshops,"
CMU/SEI-95-TR-21 , 1995.

[21] ISO/IEC. (2011) ISO/IEC 25010:2011. [Online].
http://www.iso.org/iso/catalogue_detail.htm?csnumber=35733

[22] L Bass, P Clements, and R Kazman, Software Architecture in Practice, 2nd ed.: Addison-
Wesley, 2003.

[23] Paul Clements et al., Documenting Software Architectures: Views and Beyond, 2nd ed.
Boston: Addison Wesley, 2010.

[24] SEI. (2014) Sotware Architecture Overview. [Online].
http://www.sei.cmu.edu/architecture/

[25] Microsoft. (2014) What is Software Architecture? [Online]. http://msdn.microsoft.com/en-
us/library/ee658098.aspx#GoalsofArchitecture

[26] Joseph E Hollingsworth, "One Architecture Does Not Fit All: Micro-Architecture Is As
Important As Macro-Architecture," Proceedings of the Seventh Workshop on
Institutionalizing Software Reuse, 1995.

[27] Oliver Vogel, Ingo Arnold, Arif Chughtai, and Timo Kehrer, Software Architecture: A
Comprehensive Framework and Guide for Practitioners.: Springer Science & Business
Media, 2011.

[28] Steve Edwards, "Micro-Architecture of Software Components and The Need For Good
Mental Models of Software Subsystems," ACM SIGSOFT Software Engineering Notes, pp.
46-50, 1996.

[29] Deepak Alur, Dan Malks, and John Crupi, Core J2EE Patterns: Best Practices and Design
Strategies.: Prentice Hall, 2003.

[30] Ivica Crnkovic and Magnus Larsson, "Challenges of Component-based Development,"
Journal of Software Systems, 2001.

84	

	

[31] Martin Fowler, Patterns of Enterprise Application Architecture.: Addison Wesley, 2002.
[32] P Clements, R Kazman, and M Klein, Software Architecture in Practice.: Addison Wesley

Publishing Comp. , 2003.
[33] N Rozanski and E Woods, Software Systems Architecture: Working With Stakeholders

Using Viewpoints and Perspectives.: Addison Wesley Publishing Comp. , 2005.
[34] Erich Gamma, Richard Helm, Ralph Johnson, and Jhon Vlissides, Design patterns:

elements of reusable object-oriented software. Boston, MA, USA: Addison-Wesley
Longman Publishing Co, 1995.

[35] Christopher Steel, Ramesh Nagappan, and Ray Lai, Core Security Patterns: Best Practices
and Strategies for J2EE, Web Services, and Identity Management.: Prentice Hall, 2006.

[36] Munawar Hafiz. (2013, Mar.) Security Pattern Catalog. [Online].
http://www.munawarhafiz.com/securitypatterncatalog/

[37] Adam Bien, Real World Java EE Patterns Rethinking Best Practices.: lulu.com, 2009.
[38] Oracle and/or its affiliates. Java Platform, Enterprise Edition (Java EE). [Online].

http://www.oracle.com/technetwork/java/javaee/overview/index.html
[39] Adam Bien, Real World Java EE Patterns-Rethinking Best Practices.: lulu.com, 2012.
[40] Adam Bien. (2012) about.adam-bien. [Online]. http://about.adam-bien.com
[41] Oracle and/or its affiliates. (2011) Java Champion Bios. [Online].

https://java.net/website/java-champions/bios.html#Bien
[42] Oracle Magazine. (2010, Nov.) Editors’ Choice Awards 2010: Delivering Innovation.

[Online]. http://www.oracle.com/technetwork/issue-archive/2010/10-nov/o60eca-
176293.html#bien

[43] Adam Bien. (2014) Adam Bien's Workshops. [Online]. http://workshops.adam-bien.com
[44] Adam Bien. (2014, Aug.) Adam Bien's Weblog. [Online]. http://www.adam-

bien.com/roller/abien/
[45] Adam Bien. (2012) tv.adam-bien.com. [Online]. http://tv.adam-bien.com
[46] David Kalinsky. (2002, July) Design Patterns for High Availability. [Online].

http://www.embedded.com/design/prototyping-and-development/4024434/Design-
Patterns-for-High-Availability

[47] Microsoft. (2014) Performance and Reliability Patterns. [Online].
http://msdn.microsoft.com/en-us/library/ff648802.aspx

[48] P Reed. (2002) The Rational Edge. [Online]. www-
128.ibm.com/developerworks/rational/library/2774.html

[49] E Y Nakagawa, P O Antonino, and M Becker, "Reference architecture and product line
architecture: A subtle but critical difference," ECSA’2011, pp. 207-211, 2011.

[50] E Nakagawa, "Reference Architectures and Variability: Current Status and Future
Perspectives," WICSA/ECSA, 2012.

[51] OMG. Unified modeling language (UML). [Online]. http://www.omg.org/spec/UML/
[52] Paul C Clements, "A Survey of Architecture Description Languages," Proceeding IWSSD

'96 Proceedings of the 8th International Workshop on Software Specification and Design,
1996.

[53] Oracle and/or its affiliates. (2012) Overview of Enterprise Applications - Your First Cup:
An Introduction to the Java EE Platform. [Online].
http://docs.oracle.com/javaee/6/firstcup/doc/gcrky.html

[54] Red Hat. JBoss Application Server 7. [Online]. http://jbossas.jboss.org

85	

	

[55] T Stahl, M Voelter, and K Czarnecki, Model-Driven Software Development: Technology,
Engineering, Magagement.: Wiley, 2006.

[56] J Bézivin, "On the Unification Power of Models. Software and Systems Modeling,"
Software and Systems Modeling, vol. 4, pp. 171-188, 2005.

[57] J Oldevik, "Transformation composition modelling framework," in Distributed
Applications and Interoperable Systems, 2005, pp. 108-114.

[58] J Bosch, Design and Use of Software Architectures: Adapting and Evolving a Product-
Line Approach. Boston: Addison-Wesley, 2000.

[59] P Clements and L Northrop, Software Product Lines : Practices and Patterns. Boston:
Addison-Wesley Professional, 2002.

[60] K Pohl, G Bockle, and F Van Der Linden, Software Product Line Engineering:
Foundations, Principles, and Techniques. Berlin: Springer, 2005.

[61] K Czarnecki and U W Eisenecker, Generative Programming: Methods, Tools, and
Applications. New York: ACM Press/Addison-Wesley Publishing Co, 2000.

[62] K Czarnecki, S Helsen, and U W Eisenecker, "Staged Configuration Using Feature
Models," Proceedings of the 3th Software Product Line Conference 2004, pp. 266-282,
2004.

[63] K Kang, S Cohen, J Hess, W Nowak, and S Peterson, Feature-Oriented Domain Analysis
(FODA) Feasibility Study, Report.: Software Engineering Institute and Carnegie Mellon
University, 1990.

[64] H Gomaa, Designing Software Product Lines with UML: From Use Cases to Pattern-
Based Software Architectures. 2004: Addison Wesley Longman Publishing Co, Redwood
City.

[65] H Arboleda and J C Royer, Model-Driven and Software Product Line Engineering.
Londres: ISTE Ltd and J. Wiley & Sons, 2012.

[66] Ø Haugen, A Wasowski, and K Czarnecki, "CVL: common variability language," SPLC,
pp. 266-267, 2012.

[67] Hugo Arboleda, Ruby Casallas, Jaime Chavarriaga, and Jean Claud Royer, "Software
architecture for product lines," in Architectures logicielles : Principes, techniques et
outils.: Lavoisier, 2014.

[68] ISO/IEC. (2013, Aug.) ISO/IEC 26550. [Online].
http://www.iso.org/iso/catalogue_detail.htm?csnumber=43075

[69] E Y Nakagawa, P O Antonino, and M Becker, "Exploring the Use of Reference
Architectures in the Development of Product Line Artifacts," SPLC, 2011.

[70] S Angelov, J Trienekens, and P Grefen, "Towards a Method for the Evaluation of
Reference Architectures: Experiences from a Case," Proceedings of the Second European
Conference on Software Architecture, 2008.

[71] C Atkinson, J Bayer, and D Muthig, "Component-Based Product Line Devel- opment: The
KobrA Approach," Proceedings of 1st Software Product Line Conference, pp. 289-309,
2000.

[72] J Bayer, O Flege, and C Gacek, "Creating Product Line Architectures," IW- SAPF-3:
Proceedings of the International Workshop on Software Architectures for Product
Families, pp. 210-216, 2000.

[73] D Dhungana, P Grunbacher, and R Rabiser, "DecisionKing: A Flexible and Extensible
Tool for Integrated Variability Modeling," Proceedings of the 2nd Int. Workshop on
Variability Modelling of Software-intensive Systems, 2008.

86	

	

[74] T Forster, D Muthig, and D Pech, "Understanding Decision Models. Visualiza- tion and
Complexity reduction of Software Variability," Proceedings of the 2nd Int. Work- shop on
Variability Modeling of Software-intensive Systems, 2008.

[75] D Dhungana, P Grunbacher, and R Rabiser, "The DOPLER meta-tool for decision-
oriented variability modeling: a multiple case study," Automated Software Engg, vol. 18,
pp. 77-114, 2011.

[76] A Rashid, J C Royer, and A Rummler, "Aspect-Oriented, Model-Driven Software Product
Lines, The AMPLE Way," Cambridge University Press, 2011.

[77] H Arboleda, H Romero, R Casallas, and J C Royer, "Product Derivation in a Model-
Driven Software Product Line using Decision Models," Proceedings of the 12th
Iberoamerican Conference on Requirements Engineering and Software Environments
(IDEAS’09), pp. 59-72, 2009.

[78] D Wageelar, "Context-Driven Model Refinement," vol. 3599 of Lecture Notes in Computer
Science, pp. 189-2003, 2005.

[79] L Tan, Y Lin, and H Ye, "Modeling Quality Attributes in Software Product Line
Architecture," Engineering and Technology (S-CET), 2012.

[80] L Etxeberria, G Sagardui, and L Belategi, "Quality aware software product line
engineering," Comp. Soc., pp. 57-69, 2008.

[81] B González-Baixauli, J Leite, and J Mylopoulos, "Visual Variability Analysis for Goal
Models," Proceedings of the 12th IEEE International Requirements Engineering
Conference (RE’04), pp. 198-207, 2004.

[82] D Benavides, P Trinidad, and A Ruiz-Cortés, "Automated Reasoning on Feature Models,"
Proceedings of the 17th Conference on Advanced Information Systems Engineering
(CAiSE'05), pp. 491-503, 2005.

[83] D Benavides, S Segura, P Trinidad, and A Ruiz-Cortés, "A first step towards a framework
for the automated analysis of feature models," Managing Variability for Software Product
Lines: Working With Variability Mechanisms workshop (SPLC'06), 2006.

[84] Javier G Huerta, Emilio Insafran, Silvia Abrahão, and John D McGregor, "Non-Functional
Requirements in Model-Driven Software Product Line Engineering," NFSP-DSML’12,
2012.

[85] Z Gürses, "Non-Functional V ariability Management by Complementary Quality Modeling
in a Software Product Line. Master of Science in Electrical and Electronics Engineering,"
2010,.

[86] G Sagardui , L Belategui, L Etxeberria, and A Noguero. (2010) Quality Aware Product
Line Domain Engineering. E-Diana Technical Report. [Online].
http://s15723044.onlinehome-
server.info/artemise/documents/D2_1_E_QUALITY_AWARE_PRODUCT_LINE_DOM
AIN_ENGINEERING_METHOD_M15_MULE.pdf

[87] H Gomaa, "Designing Software Product Lines with UML: From Use Cases to Pattern-
Based Software Architectures," Addison-Wesley, 2004.

[88] I John and D Muthig, "Tailoring use cases for product line modeling," Proceedings of the
International Workshop on Requirements Engineering for product lines, pp. 26-32, 2002.

[89] Robert Biddle. (2001, Apr.) Patterns of Use Cases. [Online].
http://www.mcs.vuw.ac.nz/research/object/Papers/euc-html/node12.html

[90] Oracle. (2014) Master Detail. [Online].
http://www.oracle.com/webfolder/ux/applications/fusiongps/patterns/content/recordnavigat

87	

	

ion/masterdetail/index.htm
[91] Apple Inc. (2014) Creating a Master-Detail Interface. [Online].

https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/CocoaBindings
/Tasks/masterdetail.html

[92] F Ceballos, H Arboleda, and R Casallas, "Un Enfoque para Desarrollar Aplicaciones WEB
Basado en Líneas de Producto Dirigidas por Modelos," Paradigma – Revista Electrónica
en Construcción de Software, Nov. 2008.

[93] X Peng, S Won Lee, and W Yun Zhao, "Feature-Oriented Nonfunctional Requirement
Analysis for Software Product Line," JOURNAL OF COMPUTER SCIENCE AND
TECHNOLOGY, pp. 319-338, 2009.

[94] Oracle. (2014) Interface DataSource. [Online].
http://docs.oracle.com/javase/7/docs/api/javax/sql/DataSource.html

[95] Oracle. (2014) Annotation Type PersistenceContext. [Online].
http://docs.oracle.com/javaee/6/api/javax/persistence/PersistenceContext.html

[96] Oracle. (2014) Oracle® Security Developer Tools Reference. [Online].
https://docs.oracle.com/cd/B14099_19/idmanage.1012/b15975/crypto.htm

[97] Oracle. (2014) Java Security API. [Online].
http://docs.oracle.com/javase/7/docs/api/java/security/package-summary.html

[98] Di Management. (2014) RSA Algorithm. [Online]. http://www.di-mgt.com.au/rsa_alg.html
[99] Wikipedia. (2014) Advanced Encryption Standard. [Online].

http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
[100] E Fernandez-Buglioni, Security Patterns in Practice: Designing Secure Architectures

Using Software Patterns.: Wiley, 2013.
[101] M D Elder, D Tyree, and J Edwards-Hewitt. (2014) Security Patterns Repository Version

1.0. [Online].
http://www.scrypt.net/~celer/securitypatterns/template%20and%20tutorial.pdf

[102] Oracle. (2014) Enterprise JavaBeans Technology. [Online].
http://www.oracle.com/technetwork/java/javaee/ejb/index.html

[103] Oracle. (2014) Java Persistence API. [Online].
http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html

[104] D Trowbridge et al., "Enterprise Solutions Patterns Using Microsoft.Net," Microsoft Press,
2003.

[105] Martin Fowler. (2006) GUI Architectures. [Online].
http://martinfowler.com/eaaDev/uiArchs.html

[106] Agile Modeling. (2014) Robustness Diagrams: An Agile Introduction. [Online].
http://www.agilemodeling.com/artifacts/robustnessDiagram.htm

[107] Oracle. (2013) The Java EE 6 Tutorial. [Online].
http://docs.oracle.com/javaee/6/tutorial/doc/gipjg.html

[108] OMG. (2008) Mof Model To Text Transformation Language (Mofm2T), 1.0. [Online].
http://www.omg.org/spec/MOFM2T/1.0/

[109] Eclipse.org. (2014) MDT/UML2. [Online]. http://wiki.eclipse.org/MDT-UML2
[110] David Duran. (2014) SHIFT Project Repository. [Online].

https://github.com/unicesi/SHIFT
[111] Eclipse.org. (2014) Papyrus User Guide. [Online].

http://wiki.eclipse.org/Papyrus_User_Guide#Create_a_diagram_from_an_existing_uml_fil

88	

	

e
[112] Eclipse.org. (2014) Xtend - Modernized Java. [Online]. http://eclipse.org/xtend/
[113] The Apache Software Foundation. (2014) Welcome to Apache Maven. [Online].

http://maven.apache.org
[114] Max Lam. (2014) Building and Deploying Java EE EAR with Maven to Java EE

Application Server. [Online]. http://www.developerscrappad.com/1177/java/java-
ee/maven/building-and-deploying-java-ee-ear-with-maven-to-java-ee-application-server-
part-1-project-directory-structure-amp-module-generation-through-archetype-generate/

[115] Marcilio Mendonca. (2010) S.P.L.O.T. - Software Product Lines Online Tools. [Online].
http://www.splot-research.org

[116] Oracle. (2014) Interface Future. [Online].
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Future.html

	

	
 	

89	

	

	

ANNEX 1. QUERY DECLARATION EXAMPLE	

@Entity	

@Table(name	
 =	
 "Project")	

@NamedQueries({	

	
 @NamedQuery(name	
 =	
 "project.getAllProjects",	
 query	
 =	
 "SELECT	
 p	

FROM	
 Project	
 p")	

})	

public	
 class	
 Project	
 implements	
 Serializable	
 {	

...	

}	

ANNEX 11. NORMAL TIME EXECUTION IMPLEMENTATION
Following code fragment illustrates how ProjectManager uses the EntityManager to
retrieve all projects from database:

1.	
 public	
 List<ProjectTO>	
 getAllProjects()	
 {	

2.	
 	
 List<ProjectTO>	
 projects	
 =	
 new	
 ArrayList<>();	

3.	
 	
 TypedQuery<Project>	
 query	
 =	
 em.createNamedQuery(

4.	
 	
 	
 	
 "project.getAllProjects",	
 Project.class);	

5.	
 	
 List<Project>	
 foundProjects	
 =	
 query.getResultList();	

6.	
 	
 for	
 (Project	
 project	
 :	
 foundProjects)	
 {	

7.	
 	
 	
 ProjectTO	
 to	
 =	
 new	
 ProjectTO();	

8.	
 	
 	
 to.setId(project.getId());	

9.	
 	
 	
 to.setDescription(project.getDescription());	

10.	
 	
 	
 to.setName(project.getName());	

11.	
 	
 	
 to.setStartDate(project.getStartDate());	

12	
 	
 	
 projects.add(to);	

13.	
 	
 }	

14.	
 	
 return	
 projects;	

15.	
 }	

Lines 2 to 5 use the EntityManager to create and execute the retrieval query. The results
are saved into a list of project entities. Lines 6 to 13 encapsulate each found project in its
representing TO and save it into the project TOs list, which is return to ProjectController
in line 14.	

ANNEX 111. MEDIUM TIME EXECUTION IMPLEMENTATION
The use of DataSource resource requires injecting it in the realization of
IProjectManager, which is ProjectManager in our case (see figure 17). This injection
must be performed as follows.

@Resource(name=”DataSourceName”)	

private	
 DataSource	
 ds;	

Following code fragment illustrates how ProjectBasicFLR uses the DataSource to
retrieve all projects from database:

90	

	

1.	
 public	
 List<ProjectTO>	
 getAllProjects()	
 throws	
 Exception	
 {	

2.	
 List<ProjectTO>	
 projects	
 =	
 new	
 ArrayList<>();	

3.	
 Connection	
 con	
 =	
 null;	

4.	
 Statement	
 stmt	
 =	
 null;	

5.	
 ResultSet	
 resultSet	
 =	
 null;	

6.	
 try	
 {	

7.	
 	
 con	
 =	
 ds.getConnection();	

8.	
 	
 stmt	
 =	
 con.createStatement();	

9.	
 	
 resultSet	
 =	
 stmt.executeQuery("SELECT	
 p.*	
 FROM	
 Project	
 p");	

10.	
 	
 ProjectTO	
 p;	

11.	
 	
 while	
 (resultSet.next())	
 {	

12.	
 	
 	
 p	
 =	
 new	
 ProjectTO();	

13.	
 	
 	
 int	
 tId	
 =	
 resultSet.getInt(1);	

14.	
 	
 	
 String	
 tDescription	
 =	
 resultSet.getString(2);	

15.	
 	
 	
 String	
 tName	
 =	
 resultSet.getString(3);	

16.	
 	
 	
 Date	
 tStartDate	
 =	
 resultSet.getDate(4);	

17.	
 	
 	
 p.setId(tId);	

18.	
 	
 	
 p.setDescription(tDescription);	

19.	
 	
 	
 p.setName(tName);	

20.	
 	
 	
 p.setStartDate(tStartDate);	

21.	
 	
 	
 projects.add(p);	

22.	
 	
 }	

23.	
 	
 return	
 projects;	

24.	
 }	
 catch	
 (SQLException	
 ex)	
 {	

25.	
 	
 throw	
 new	
 Exception(ex.getMessage());	

26.	
 }	

27.	
 }	

Line 7 uses the DataSource to get the database connection. Lines 8 and 9 prepare and
execute the retrieval query. Lines 11 to 22 deal with the encapsulation of the primitives
contained in each record of the resultSet to a corresponding TO. Once the TO is created
and initialized, it is added to the TOs list in line 21. Line 23 returns the resulting TOs list
to the Boundary.	

ANNEX V1. HIGH SYNC TIME EXECUTION IMPLEMENTATION
The following code shows the implementation of data retrieval in ProjectOptimizedFLR
(see figure 20).

1.	
 public	
 List<ProjectTO>	
 getAllProjects(int	
 start,	
 int	
 maxResults)	
 	

2.	
 throws	
 Exception	
 {	
 	
 	
 	
 	
 	

3.	
 List<ProjectTO>	
 projects	
 =	
 new	
 ArrayList<>();	

4.	
 Connection	
 con	
 =	
 null;	

5.	
 Statement	
 stmt	
 =	
 null;	

6.	
 ResultSet	
 resultSet	
 =	
 null;	

7.	
 try	
 {	

8.	
 	
 con	
 =	
 ds.getConnection();	

9.	
 	
 stmt	
 =	
 con.createStatement();	

91	

	

10.	
 	
 resultSet	
 =	
 stmt.executeQuery("SELECT	
 p.*	
 FROM	
 Project	
 p");	

11.	
 	
 if	
 (start	
 !=	
 0)	

12.	
 	
 	
 resultSet.absolute(start);	

13.	
 	
 int	
 i	
 =	
 0;	

14.	
 	
 ProjectTO	
 p;	

15.	
 	
 while	
 (resultSet.next()	
 	
 &&	
 i	
 <	
 maxResults)	
 {	

16.	
 	
 	
 p	
 =	
 new	
 ProjectTO();	

17.	
 	
 	
 int	
 tId	
 =	
 resultSet.getInt(1);	

18.	
 	
 	
 String	
 tDescription	
 =	
 resultSet.getString(2);	

19.	
 	
 	
 String	
 tName	
 =	
 resultSet.getString(3);	

20.	
 	
 	
 Date	
 tStartDate	
 =	
 resultSet.getDate(4);	

21.	
 	
 	
 p.setId(tId);	

22.	
 	
 	
 p.setDescription(tDescription);	

23.	
 	
 	
 p.setName(tName);	

24.	
 	
 	
 p.setStartDate(tStartDate);	

25.	
 	
 	
 projects.add(p);	

26.	
 	
 	
 i++;	

27.	
 	
 }	

28.	
 	
 return	
 projects;	

29.	
 }	
 catch	
 (SQLException	
 ex)	
 {	

30.	
 	
 throw	
 new	
 Exception(ex.getMessage());	

31.	
 }	

32.	
 }	

Line 8 uses the DataSource to get the database connection. Lines 9 and 10 prepare and
execute the retrieval query. Lines 11 and 12 set the current page based on start value.
Lines 15 to 27 deal with the encapsulation of the primitives contained in each record of
the resultSet to a corresponding TO. It is important to highlight the condition in line 15,
which stops retrieving data when i counter reaches the value contained in maxResults.
Line 28 returns the resulting TOs list to the Boundary.	

ANNEX V. HIGH ASYNC TIME EXECUTION IMPLEMENTATION
The following code fragment shows the implementation of listAllProjects(count)
service of ProjectParallelizer (see figure 23). Keep in mind that it parts from the
previous injection of ProjectAsyncWorker bean.

//	
 ProjectAsyncWorker	
 injection	

@EJB	

ProjectAsyncWorker	
 worker;	

1.	
 public	
 List<ProjectTO>	
 getAllProjects(long	
 pCount)	
 {	
 	

2.	
 List<Future<List<ProjectTO>>>	
 futures	
 =	
 new	
 LinkedList<>();	

3.	
 List<ProjectTO>	
 projects	
 =	
 new	
 LinkedList<>();	

4.	
 int	
 start	
 =	
 0;	

5.	
 int	
 maxResults	
 =	
 1;	

6.	
 int	
 iterations	
 =	
 (int)	
 (pCount	
 /	
 maxResults);	

7.	
 for	
 (int	
 i	
 =	
 0;	
 i	
 <	
 iterations;	
 i++)	
 {	

8.	
 	
 futures.add(worker.getAllProjects(start,	
 maxResults));	

92	

	

9.	
 	
 start	
 +=	
 maxResults;	

10.	
 }	

11.	
 for	
 (Future<List<ProjectTO>>	
 future	
 :	
 futures)	
 {	

12.	
 	
 try	
 {	

13.	
 	
 	
 projects.addAll(future.get());	

14.	
 	
 }	
 catch	
 (InterruptedException	
 e)	
 {	

15.	
 	
 	
 //	
 TODO	
 Auto-­‐generated	
 catch	
 block	

16.	
 	
 	
 e.printStackTrace();	

17.	
 	
 }	
 catch	
 (ExecutionException	
 e)	
 {	

18.	
 	
 	
 //	
 TODO	
 Auto-­‐generated	
 catch	
 block	

19.	
 	
 	
 e.printStackTrace();	

20.	
 	
 }	

21.	
 }	

22.	
 return	
 projects;	

23.	
 }	

Line 2 creates the Future list that will store results from each thread. A Future in java
represents the result of an asynchronous computation [116]. Line 4 and 5 initialize the
page and chunk parameters. Line 6 calculates how many Threads will be needed to
retrieve the project lists. Lines 7 to 10 launch each Thread to start retrieving data. Lines
11 to 20 iterate over the instantiated futures, and get the resulting list from each one (line
13). It is important to have two main loops because the use of the get() method of a
Future freezes the current execution Thread, thus, if it is invoked within the same loop,
each thread must be fully executed to launch the next one, causing a sequential retrieval
of data. Implementation of listAllProjects(start,	
 maxResults) from
ProjectAsyncWorker is the same as the one shown in “high sync level” section. The only
difference is that the resulting list is wrapped into a Future to enable asynchronous
operations.	

