IDENTIFICACIÓN DE MICRO-ARN ASOCIADOS A ANGIOGÉNESIS EN PACIENTES DIAGNOSTICADOS CON GLAUCOMA DE ÁNGULO ABIERTO

Juliana Andrea Cabrera Perdomo

Universidad Icesi
Facultad de Ciencias Naturales
Biología
2016
IDENTIFICACIÓN DE MICRO-ARN ASOCIADOS A ANGIOGÉNESIS EN PACIENTES DIAGNOSTICADOS CON GLAUCOMA DE ÁNGULO ABIERTO

Juliana Andrea Cabrera Perdomo

TRABAJO DE GRADO PARA OPTAR AL TÍTULO DE
PREGRADO EN BIOLOGÍA

DIRECTOR ANDRÉS O. CASTILLO, PhD

CO-DIRECTOR LEONEL I. MONTEALEGRE, BIOLOGO, ESTUDIANTE PhD

Cali

2016
Aprobado Por:

Evaluador

Evaluador

Director del proyecto

Co- Director del proyecto

Santiago de Cali, Junio 3 del 2016.
CONTENIDO

RESUMEN...11

ABSTRACT ...12

1. ANTECEDENTES Y PLANTEAMIENTO DEL PROBLEMA13

2. JUSTIFICACION ..14

3. MARCO TEORICO Y ESTADO DEL ARTE ..14
 3.1 Anatomía del ojo..14
 3.2 Glaucoma..16
 3.3 Conceptos básicos de los miARN...17
 3.4 La expresión de miARN como factor de riesgo para el glaucoma18
 3.5 Redes de conectividad génica...18

4. HIPÓTESIS ..19

5. OBJETIVOS ...19
 5.1 Objetivo General ...19
 5.2 Objetivos específicos..20

6. METODOLOGÍA ...20
 6.1 Análisis en laboratorio ..20
 6.1.1 Toma De Muestra ...20
 6.1.2 Aislamiento del ARN y conversión a ADN Copia21
 6.1.3 Arreglos de PCR para miARN ...24
 6.1.4 Análisis estadísticos ..26
 6.2 Análisis in silico ...26
 6.2.1 Determinación del algoritmo de Búsqueda26
 6.2.2 Análisis de los datos obtenidos en GEO ...26
 6.2.3 Construcción de la red génica de asociaciones27

7. Resultados ...27
 7.1 Resultados de laboratorio ...27
 7.2 Resultados del análisis in silico..28
 7.2.1 Algoritmo de búsqueda y análisis con GEO2R..............................28
7.2.3 Obtención de los genes blanco a partir de una base de datos curada ..28
7.3 Obtención de la red de asociaciones de proteínas ..30

8. DISCUSIÓN ...31

9. CONCLUSIONES ..33

10. RECOMENDACIONES ...34

11. REFERENCIAS BIBLIOGRÁFICAS ...35

12. ANEXOS ...38
LISTA DE TABLAS

Tabla 1. Matriz de PCR con los miARN asociados con angiogénesis24

Tabla 2. Genes posiblemente silenciados por miR-92a..29

Tabla 3. Genes blanco de miR-92a con sus descripciones30
LISTA DE FIGURAS

Figura 1. Anatomía del ojo humano...15

Figura 2. Protocolo de aislamiento de ARN total usando el PaxgeneBlood RNA-kit. ... 22

Figura 3. Conversión de los ARNm maduros a ADNc y posterior detección23

Figura 4. miScript PCR array: para miARN maduros reportados por regular angiogénesis...25

Figura 5. Porcentajes de detección de los miARN asociados con la regulación de procesos angiogénicos...28

Figura 6. Red génica de la vía de señalización asociada con angiogénesis32
LISTA DE ANEXOS

I. Acta de aceptación del comité de ética .. 32
II. Tabla de los artículos usados en el GEO 33
III. Tabla de los genes de baja expresión usados 34
ABREVIATURAS

POAG: Glaucoma primario de ángulo abierto (del inglés Primary Open-Angle Glaucoma)

MT: Malla Trabecular

ME: Matriz Extracelular

PIO: Presión Intraocular

RGCs: Células ganglionares de la retina (del inglés Retinal Ganglio Cells)

ADNc: ADN copia

ARNm: ARN mensajero

miARN: micro ARN

Log FC: Cambio logarítmico de la expresión de los genes (del inglés Fold Chance)

RT-PCR: Reacción en cadena de la polimerasa con transcripción reversa (del inglés Reverse Transcription Polymerase Chain Reaction)

GEO: Gene Expression Omnibus

NCBI: centro nacional de información biotecnológica (del inglés National Center for Biotechnology Information)
AGRADECIMIENTOS

Principalmente a mis padres por todo su apoyo, amor y comprensión durante este proceso académico y a mi familia por estar siempre presente con su amor.

Al Dr. Andrés Castillo por su paciencia y compromiso con el arte de enseñar la ciencia y por permitirme participar en este proyecto.

A Leonel I. Montealegre por su paciencia y colaboración a lo largo del proyecto.

A Laura Rodríguez por su colaboración y enseñanza en el laboratorio.

A los Dres. Carlos Valderrama y Leonardo Herrera por sus enseñanzas y acompañamiento en el proceso académico.

A mis padres por todo su apoyo, amor y comprensión durante este proceso académico y a mi familia por estar siempre presente con su amor.

Y finalmente a todas las personas que de alguna manera contribuyeron a mi crecimiento académico y personal.
RESUMEN

El glaucoma es una enfermedad caracterizadas por la pérdida progresiva de células ganglionares de la retina (y sus axones, que da como resultado defectos del campo visual posterior y pérdida de la visión. Los miARN tienen un papel importante en el glaucoma, ellos participan en el control de la formación de la matriz extracelular del ojo. Igualmente, los miARNs son importantes en la angiogénesis donde fallas en este proceso biológico se puede asociar con un flujo incorrecto de sangre hacia las capas de la retina del ojo y hacia la cabeza del nervio óptico generando isquemia, y por lo tanto, afectando las células de la retina.

En el reciente estudio se identificó los miARN asociados con la angiogénesis presentes en muestras de sangre periférica de pacientes diagnosticados con POAG, como los genes diana para los miARN asociados con la angiogénesis detectados y con la información obtenida se construyó una red génica de asociaciones.

En total fueron analizadas por arreglos de PCR la presencia de 20 moléculas de miARN asociados con angiogénesis en 12 muestras de sangre periférica, identificando la presencia de ocho de los 20 en los seis pacientes diagnosticados con Glaucoma. El miR-92a-3p se detectó solo en las muestras de pacientes diagnosticados con POAG pero no en los participantes aparentemente sanos control. Además, se identificaron 23 genes diana para miR-92a-3p de un total de 927 genes con baja expresión en pacientes diagnosticados con POAG. El análisis de red génica de asociación señaló una vía de comunicación asociada con angiogénesis conformada por los genes VEGFA, PLCG1, PRKCA, RAF1, MAP2K1 Y MAPK3 en donde la PRKCA es un gen diana para el miR-92a-3p.

Palabras claves: Glaucoma, angiogénesis. Micro ARN. Arreglos de PCR. Redes génicas de asociación.
ABSTRACT

Glaucoma is a disease characterized by the progressive loss of retinal ganglion cell and their axons that resulting in defects in the visual field and vision loss. miRNAs have an important role in glaucoma; they participate in the controlling the formation of the extracellular matrix of the eye. Similarly, miRNAs are important in angiogenesis in where fails in this biological process it may be associated with improper blood flow to the layers of the retina of the eye and towards the optic nerve head generating ischemia, and therefore affecting retinal cells.

In the present study was identified miRNAs associated with angiogenesis present in peripheral blood samples of patients diagnosed with POAG as well as target genes for miRNAs associated with angiogenesis. From the information obtained gene was constructed a network of associations.

In total were analyzed by PCR arrays 20 miRNA associated with angiogenesis in 12 peripheral blood samples. 8 of 20 miRNAs were identifying in patients diagnosed with Glaucoma. The miR-92a-3p was detected only in samples from patients diagnosed with POAG but not in apparently healthy control participants. Also, from 927 genes with low expression in patients diagnosed with POAG, 23 target genes for miR-92a-3p were identified. The analysis of genetic network association associated with angiogenesis showed a system composed of the genes: VEGF, PLCG1, PRKCA, RAF1, MAP2K3, MAP2K1, in where PRKCA was a target gene for miR-92a-3p

Keywords: Glaucoma, angiogenesis. Micro RNA. PCR arrays. Gene networks of association.
1. ANTECEDENTES Y PLANTEAMIENTO DEL PROBLEMA

El glaucoma de ángulo abierto primario (POAG, por sus siglas en inglés) es una enfermedad asintomática que hoy en día presenta un gran impacto a nivel mundial según la Organización Mundial para la Salud (OMS), afectando a millones de personas principalmente aquellas mayores de 40 años. Esta enfermedad de carácter degenerativo no tiene cura en estados avanzados, por lo cual es de gran importancia un diagnóstico oportuno y rápido. Se encuentra asociada a alteraciones en el campo visual y relacionado con múltiples factores de riesgo entre los cuales el aumento de la presión intraocular (PIO) es el más importante, así, una profunda comprensión en la etiología del glaucoma ayudará en el diagnóstico, etapas fisiopatológicos y generación de fármacos (Raghunath & Perumal, 2015).

En los países desarrollados, más del 50% de las personas que padecen la enfermedad no han sido diagnosticadas (Sommer et al., 1991), pero aún más, en países en vías de desarrollo, como el nuestro, se estima que esta falta de diagnóstico podría ser aún mayor, del orden del 60 al 80%. En particular, el problema en Colombia se ha subestimado, en parte por falta de estudios epidemiológicos poblacionales que muestren la magnitud de la situación en grupos de mayor riesgo.

Se ha propuesto que uno de los mecanismos asociados con la etiología del POAG es la expresión aberrante de micro ARN (miARN) asociados a procesos angiogénicos que podrían estar afectando el flujo sanguíneo correcto en las células endoteliales, la retina y el nervio óptico (Venkataraman et al., 2010). Por lo anterior, es necesario investigar si este proceso angiogénico podría ser considerado como un factor de riesgo para POAG.
2. JUSTIFICACION

El glaucoma hace parte de un grupo de enfermedades caracterizadas por la pérdida progresiva de células ganglionares de la retina (RGCs, por sus siglas en inglés) y sus axones, que da como resultado defectos del campo visual posterior y pérdida de la visión. La presión intraocular (PIO) anormalmente elevada es uno de los principales factores de riesgo para la aparición y desarrollo de glaucoma. (Wang et al., 2015).

El glaucoma es una de las principales causas de ceguera mundial. Entre los tipos de glaucoma, el más frecuente es POAG, constituyendo aproximadamente el 60% de todos los casos (Zanón-Moreno et al., 2008). A nivel mundial, se estima que más de 70 millones de personas la padecen, por lo que tiene gran impacto a nivel social, convirtiéndose así en un problema de salud pública. Para Colombia en particular, 3 de cada 100 personas están propensos a sufrir de esta enfermedad, según las cifras de la Asociación Grupo de Trabajo en Glaucoma Colombia (Lozada, 2015). Es importante resaltar que es una enfermedad asintomática y por lo tanto de difícil diagnóstico temprano, no tiene cura y al avanzar la edad los síntomas se hacen más claros pero es mucho más difícil un tratamiento efectivo.

3. MARCO TEORICO Y ESTADO DEL ARTE

3.1 Anatomía del ojo

Un recubrimiento resistente y blanco, llamado esclerótica, protege el ojo. Parte de la esclerótica blanca puede observarse en la parte frontal del ojo. Una membrana transparente y delicada, llamada conjuntiva, recubre la esclerótica (Lozada, 2015). En la parte frontal del ojo se encuentra la córnea. La córnea es la parte transparente del recubrimiento protector del ojo. Permite el ingreso de luz al ojo. El iris es la parte coloreada del ojo que se encoge y expande para que la pupila pueda permitir el ingreso de la cantidad correcta de luz al ojo. La pupila dirige la luz al cristalino. El cristalino enfoca la luz sobre la retina (dentro del recubrimiento del ojo). Las fibras nerviosas de la retina transportan las imágenes al cerebro a
través del nervio óptico (Lozada, 2015). La parte frontal del ojo contiene un líquido transparente llamado líquido intraocular o humor acuoso, producido por el cuerpo ciliar. El líquido fluye hacia el exterior por la pupila. A continuación, es absorbido en el torrente sanguíneo a través del sistema de drenaje del ojo (Lozada, 2015).

![Figura 1. Anatomía del ojo humano.](image)

Este sistema de drenaje es una malla de canales de drenaje que se encuentran alrededor del borde exterior del iris. Un drenaje adecuado ayuda a mantener la presión ocular en un nivel normal. La producción, el flujo y el drenaje de este líquido constituyen un proceso continuo y activo, necesario para la salud del ojo.

La PIO depende de la cantidad de líquido que se encuentre en el ojo. Si el sistema de drenaje del ojo funciona correctamente, es posible drenar el líquido y evitar una acumulación. Del mismo modo, si el sistema de producción de líquido del ojo funciona correctamente, se producirá la cantidad adecuada de líquido para un ojo saludable. Su PIO puede variar en distintos momentos del día, pero normalmente se mantiene dentro de un margen que el ojo puede controlar (18 mmHg aproximadamente) (Lozada, 2015).
Glaucoma

El glaucoma es un grupo heterogéneo de neuropatías ópticas y es la principal causa de ceguera irreversible en el mundo. El POAG es la forma más común de glaucoma, y es caracterizado por la lenta progresión de una atrofia en el disco óptico, con una correspondiente perdida del campo visual periférico y una apariencia excavada en el disco óptico (Quigley et al., 1997). Se ha estimado que aproximadamente 80 millones de personas en el mundo serán afectadas por la enfermedad para el año 2020 (Omar, 2012).

Algunos de los factores de riesgo que contribuyen a glaucoma han sido identificados y estos incluyen; la edad, antecedentes familiares, la PIO elevada, daño del nervio óptico existente, histéresis reducida corneal, la miopía, la diabetes y pseudoexfoliación (Coleman., 2008). En el glaucoma, la degeneración del nervio óptico comienza en la periferia y avanza hacia el centro resultando en una apariencia excavado.

El humor acuoso se produce por la secreción de los cuerpos ciliares que se drena a través de la malla trabecular (MT) y una pequeña porción (10%) por vía uveoescleral. Un equilibrio entre la entrada y la salida del humor acuoso determina los niveles de PIO. El flujo excesivo o la obstrucción en el drenaje del humor acuoso a través del ángulo iridocorneal (región yuxtacanalicular o malla trabecular / canal de Schlemm) conduce a la elevación de la PIO que puede causar daño al nervio óptico. La relación exacta entre la PIO elevada y glaucoma se entiende de manera incompleta (Chen et al., 2011).

La retina es un tejido en capas en la parte posterior del ojo que contiene las células foto receptoras especializadas llamadas bastones y conos, así como otros tipos de células, incluyendo las ganglionares, bipolares, horizontales, y las células amacrinas. Su desarrollo, mantenimiento y funciones visuales sensibles a la luz están muy regulados (Zhu et al., 2011). Las células ganglionares de la retina (por sus siglas en ingles RGCs) son un grupo de neuronas sensoriales especializadas en el sistema nervioso central, localizadas en la capa interna de la retina. En pacientes con glaucoma, el incremento en la presión
intraocular daña los cuerpos de las células así como los axones, resultando en una permanente e irreversible ceguera. La degeneración de la retina en pacientes con glaucoma es a menudo acompañada por apoptosis de RGCs la cual puede ser causadas por exocitotoxicidad, hipoxia o estrés oxidativo (Kong et al., 2014).

3.3 Conceptos básicos de los miARN

Los micro ARN (miARN) son una clase de pequeños ARN no codificantes (19-25 nucleótidos) que se encuentran en las plantas y los animales, que regulan negativamente la expresión génica (Chen et al., 2011). Los miARN genes pueden ser intergénicos o intragénicos. Los miARN intergénicos se han encontrado en los intrones de proteínas y genes que no codifican proteínas y en los exones de transcritos largos no codificantes y por lo general su expresión está regulada junto con la de sus genes de acogida (Rodríguez et al., 2004).

Los miARN intergénicos se cree que son transcriptos de forma independiente de otros genes y pueden ser localizados en grupos que generan unidades policistrónicas que contienen múltiples bucles de los cuales los miARN maduros se procesan. Los promotores que regulan la expresión de estos miARN han demostrado tener algunas similitudes en sus motivos con los promotores de otros genes transcritos por la ARN polimerasa II tales como los genes de codificación de proteínas (Xie et al., 2005). Actualmente, se cree que el genoma humano codifica más de 1000 miARN y cada vez hay más pruebas que sugieren que juegan un papel crítico en muchos procesos biológicos clave, como el crecimiento celular, la diferenciación de los tejidos, la proliferación celular, el desarrollo embrionario, y la apoptosis (Esquela-Kerscher et al., 2006). Estudios en ratones mutantes han mostrado por ejemplo que el grupo miR-183/96/182 y miR- 132/212 fueron esenciales para el desarrollo sináptico de la retina y el miR-124 fue crítico para la maduración de los conos celulares en la retina (Kong et al., 2014).
3.4 La expresión de miARN como factor de riesgo para el glaucoma
En 2014 un estudio reportó que los miARN tienen un papel importante en las enfermedades oculares y dentro de ellas se encuentra el glaucoma en donde estas moléculas participan en la patogénesis de la enfermedad de forma directa e indirecta (Raghunath & Perumal, 2015). Los miARN participan en el control de la formación de la matriz extracelular (ECM, por sus siglas en inglés) (Raghunath & Perumal, 2015). Se ha reportado que la expresión aberrante de miR-183 altera la expresión de integrina-β afectando la fisiología de la malla trabecular (MT) y por lo tanto aumentando el riesgo de padecer glaucoma (Yan et al., 2012). Además, se ha reportado que la familia del miR-29 regula la expresión de la ECM en la MT llevando a cambios en la presión intraocular (Luna et al., 2009). Los miARN también juegan un papel importante en la angiogénesis para la proliferación, la migración y maduración de las células endoteliales (Venkataraman et al., 2010). En la enfermedad del POAG, fallas en la angiogénesis se puede asociar con un flujo incorrecto de sangre hacia las capas de la retina y hacia la cabeza del nervio óptico generando isquemia, y por lo tanto, afectando las células de la retina evitando un campo visual adecuado. (Venkataraman et al., 2010).

3.5 Redes de conectividad génica
La red de interacción es una manera más precisa para representar la información de las listas de genes o vías, ya que describe qué genes están estrechamente relacionados dentro de una vía determinada. Por lo tanto, tiene el potencial de detectar las señales más sutiles, tales como perturbaciones locales dentro de las vías conocidas, así como dentro de vías que aún no han sido descritos (Nacu, Critchley-Thorne, Lee, & Holmes, 2007). Una red funcional reportada que exhibe la expresión génica diferencial en el glaucoma, es la neuroinflamación en particular la cascada complementaria. Este cambio en esta vía funcional es evidente tanto en la cabeza del nervio óptico y la retina, y representa uno de los primeros cambios detectados en ambos tejidos, incluso antes de evidenciar la patología celular. (Nacu,Critchley-Thorne,Lee,&Holmes,2007)
El paradigma genético ha cambiado porque ahora sabemos que la información de las características fenotípicas del organismo, además de estar contenida explícitamente en la secuencia de bases de cada gen, también está contenida en la topología de la red genética (cómo están conectados los genes) y en su dinámica (qué genes se expresan en determinado momento) (González, 2007). Además, se pueden presentar no solo interacciones físicas entre proteínas sino entre proteínas-genes. Los genes interactúan unos con otros a través de las proteínas reguladoras (factores de transcripción) que generan. Los factores de transcripción se unen de forma específica a las regiones reguladoras de los genes, activando o reprimiendo su expresión. Esta serie de interacciones, mediadas por los factores de transcripción, da lugar a una red dirigida en la que dos genes están “conectados” si la expresión de uno regula, positiva o negativamente, la expresión del otro (González, 2007).

4. HIPÓTESIS

Ho: La expresión de miARN asociados a la angiogénesis es igual entre pacientes diagnosticados con POAG y personas sanas.

Ha: La expresión de miARN asociados a la angiogénesis es diferente entre pacientes diagnosticados con POAG y personas sanas.

5. OBJETIVOS

5.1 Objetivo General

Identificar los miARN asociados con la angiogénesis presentes en muestras de sangre periférica de pacientes diagnosticados con POAG.
5.2 Objetivos específicos

- Detectar la presencia de miARN asociados con la angiogénesis en muestras sangre periférica de pacientes diagnosticados con POAG.
- Identificar los genes diana para los miARN asociados con la angiogénesis detectados en muestras sangre periférica de pacientes diagnosticados con POAG.
- Construir una red génica de asociaciones de genes diana para los miARN asociados con la angiogénesis detectados en muestras sangre periférica de pacientes diagnosticados con POAG y sus genes dianas.

6. METODOLOGÍA

6.1 Análisis en laboratorio

6.1.1 Toma De Muestra

Para el análisis de laboratorio se tomaron 12 muestras de sangre periférica por punción venosa (2,5 ml) de seis pacientes diagnosticados con PAOG y seis participantes aparentemente sanos como grupo control. La sangre fue almacenada en tubos Vacutainers® Plus K2 EDTA y refrigerada a -4°C hasta el momento de su procesamiento. La toma fue realizada por una enfermera con amplia experiencia para el procedimiento. El presente trabajo de grado hace parte del estudio titulado “Prevalencia de Glaucoma en pacientes hipertensos y diabéticos en seis ciudades de Colombia” con acta de aprobación ética 05-014 del comité institucional de ética humana de la Universidad del Valle (Anexo I).

Los criterios de inclusión de los pacientes participantes del estudio fueron los siguientes: firmar un consentimiento informando en donde aceptaba participar en el estudio y ser mayor de 50 años. Conjuntamente, como criterios de exclusión se consideraron: presentar co-morbididades asociadas graves (insuficiencia renal, falla cardíaca congestiva, apnea del sueño, enfermedades autoinmunes con
terapia biológica); cirugías oftalmológicas intraoculares previas (Ej.: cirugía de cataratas, por trauma, desprendimiento de retina, degeneración macular o maculopatía); patologías oculares congénitas (Ej.: coloboma) y pacientes con alteraciones cognitivas que no le permitan comprender el consentimiento informado.

6.1.2 Aislamiento del ARN y conversión a ADN Copia

El aislamiento del ARN total se realizó utilizando el PAXgene Blood RNA Kit (Qiagen, # 762174) siguiendo las instrucciones del fabricante (Figura 2).

Para el aislamiento del ARN se centrifugaron los tubos de Vacutainers® Plus K2 EDTA que contenían las muestras de sangre periférica y se retiró el sobrenadante por decantación, se añadió agua libre de ARNasa al pellet, y posteriormente, para disolver el pellet se agito el tubo y mediante centrífugación se desechó el sobrenadante. Luego, se añadió una solución tampón de resuspensión y se agito para disolverlo totalmente. El pellet resuspendido se incubo con proteinasa K en tampones optimizados para digerir las proteínas. Se centrífuga de nuevo a través de una columna PAXgeneShredder spin column para homogeneizar el lisado celular y eliminar los restos celulares, y se transfirió el sobrenadante de la fracción eluida a un tubo de microcentrífuga limpio.

Se añadió etanol para ajustar las condiciones de unión y se deposita el lisado en una columna PAXgene RNA spin column. Durante una breve centrífugación el ARN se unió selectivamente a la membrana de silicagelPAXgene mientras los contaminantes la atraviesan, el resto de contaminantes se eliminan en varios pasos eficaces de lavado. Entre el primer y el segundo paso la membrana se trata con DNAsa I para eliminar los restos de ADN ligado.

Después de los pasos de lavado, el ARN se eluyó en una solución tampón de elución y se desnaturalizó por calor. Una vez purificado el ARN, se cuantificó su concentración y pureza utilizando un espectrofotómetro nanodrop empleando 1 µl del ARN aislado.
Figura 2. Protocolo de aislamiento de ARN total

1. Añadir proteína K (PK) y tampón de unión (BR2)
2. Incubar
3. Transferir una columna PAXgene Shredder spin column (PSC)
4. Añadir etanol
5. Cargar en la columna PAXgene de centrifugación de ARN (PRC)
6. Ligación del ARN total
7. Lavar
8. Digestión del ADN
9. Lavar
10. Eluir
11. Calentar a 65°C
12. ARN listo para usar
Posteriormente, siguiendo las especificaciones del fabricante, se utilizó un miScript II RT Kit (Qiagen, # 218161;) para los experimentos de transcripción reversa (RT-PCR) (Figura 3).

Figura 3. Conversión del ARN a ADNc y posterior detección. El extremo 3’ es poliadenilado, lo cual sirve para que un cebador oligo-dT se le una y permita a la polimerasa reversa realizar la conversión.

Una vez las muestras fueron retrotranscritas a ADNc, se depositaron al miScript miRNA PCR array (Qiagen, # 331221-D24;) para su hibridación con el arreglo de PCR diseñado.
6.1.3 Arreglos de PCR

En el presente estudio se utilizó un arreglo de PCR diseñado para identificar secuencias de miARN maduros, validados experimentalmente por regular angiogénesis (Tabla 1).

<table>
<thead>
<tr>
<th>miARN</th>
<th>No. DE ACCESO</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hsa-miR-16-5p</td>
<td>MIMAT0000069</td>
<td>Anti-angiogénico</td>
</tr>
<tr>
<td>Hsa-miR-17-5p</td>
<td>MIMAT0000070</td>
<td>Involucrado en la angiogénesis tumoral</td>
</tr>
<tr>
<td>Hsa-miR-20a</td>
<td>MIMAT0000075</td>
<td>Anti-angiogénico</td>
</tr>
<tr>
<td>Hsa-miR-21-5p</td>
<td>MIMAT0000076</td>
<td>Pro-angiogénico</td>
</tr>
<tr>
<td>Hsa-miR-23a-5p</td>
<td>MIMAT0004496</td>
<td>Pro-angiogénico. Esencial para el desarrollo ocular adecuado</td>
</tr>
<tr>
<td>Hsa-miR-27a-5p</td>
<td>MIMAT0004501</td>
<td>Involucrado en el daño del nervio óptico</td>
</tr>
<tr>
<td>Hsa-miR-92a-3p</td>
<td>MIMAT0000092</td>
<td>Pro-angiogénico</td>
</tr>
<tr>
<td>Hsa-miR-100-5p</td>
<td>MIMAT0000092</td>
<td>Pro-angiogénico</td>
</tr>
<tr>
<td>Hsa-miR-126-3p</td>
<td>MIMAT0000098</td>
<td>Inhibe la expresión de la molécula de adhesión vascular celular 1 (VCAM-1), que medía la adhesión de leucocitos a las células endoteliales.</td>
</tr>
<tr>
<td>Hsa-miR-130a-3p</td>
<td>MIMAT0000445</td>
<td>Pro-angiogénico e hipoxia</td>
</tr>
<tr>
<td>Hsa-miR-132-3p</td>
<td>MIMAT0000425</td>
<td>Involucrado en el desarrollo sináptico de la retina</td>
</tr>
<tr>
<td>Hsa-miR-143-3p</td>
<td>MIMAT0000426</td>
<td>Involucrado en la regulación de otros genes</td>
</tr>
<tr>
<td>Hsa-miR-145-5p</td>
<td>MIMAT0000437</td>
<td>Involucrado en el daño del nervio óptico</td>
</tr>
<tr>
<td>Hsa-miR-155-5p</td>
<td>MIMAT0000646</td>
<td>Involucrado en la angiogénesis tumoral</td>
</tr>
<tr>
<td>Hsa-miR-210</td>
<td>MIMAT0000267</td>
<td>Promueve la migración de células endoteliales vasculares</td>
</tr>
<tr>
<td>Hsa-miR-218-5p</td>
<td>MIMAT0000275</td>
<td>Inhibe el camino para mantener la función vascular de la retina</td>
</tr>
<tr>
<td>Hsa-miR-221-5p</td>
<td>MIMAT0004568</td>
<td>Inhibe la migración de las células endoteliales, proliferación y angiogénesis</td>
</tr>
<tr>
<td>Hsa-miR-222-3p</td>
<td>MIMAT000279</td>
<td>Inhibe la migración de las células endoteliales, proliferación y angiogénesis</td>
</tr>
<tr>
<td>Hsa-miR-296-5p</td>
<td>MIMAT0000690</td>
<td>Pro-angiogénico</td>
</tr>
<tr>
<td>Hsa-miR-378-3p</td>
<td>MIMAT0000732</td>
<td>Involucrado en la supervivencia celular</td>
</tr>
</tbody>
</table>
La técnica de arreglos de PCR combina dos herramientas moleculares: la hibridación con microarreglos, en la que se conocen las secuencias de interés que van a hibridar con la muestra; y el RT-PCR en tiempo real, la cual incrementa la sensibilidad y eficiencia de la detección y permite utilizar pequeñas cantidades de ARN por reacción. Lo anterior presenta grandes beneficios cuando los objetivos experimentales se enfocan en una sola vía de regulación o en un limitado número de genes de interés.

Para la reacción de hibridación y detección por arreglos de PCR se utilizó el miScript SYBR Green PCR kit (Qiagen, # 218075) siguiendo las recomendaciones del fabricante (Figura 4).

El termociclador utilizado fue un CFX96 (Bio-Rad) del laboratorio de biología molecular del Departamento de Biología de la Universidad del Valle con el siguiente programa de amplificación:

1- 10 min a 95°C
2- 2-15 s a 95°C × 40 ciclos
3- 3-1 min a 60°C
6.1.4 Análisis de datos
Se realizó unos análisis descriptivos de los miARN identificados por hibridación en el arreglo de PCR por proporciones utilizando gráficas de barra elaboradas por el programa Excel 2013.

6.2 Análisis in silico

6.2.1 Algoritmo de Búsqueda
Se construyó un algoritmo de búsqueda con el fin de seleccionar bases de datos publicadas en estudios transcriptómicos del servidor *Gene Expression Omnibus* (GEO) del centro nacional de información biotecnológica (NCBI, por sus sigla en inglés) de los Estados Unidos. El algoritmo empleado fue: “Glaucoma OR Open-Angle Glaucoma AND tissue AND Trabecular Meshwork OR Optic Nerve OR aqueous humor AND Homo sapiens [porgn: txid9606]”.

6.2.2 Análisis de las bases de datos obtenidos en el GEO
Los criterios de inclusión para la selección de las bases de datos fueron que las poblaciones de los estudios no presentara enfermedades como diabetes e hipertensión, o hayan sido tratada con fármacos. Además, los archivos contenidos en las bases de datos fuesen analizable con el programa GEO2R del servidor GEO (http://www.ncbi.nlm.nih.gov/geo/geo2r/), el cual compara dos o más grupos de datos transcriptómicos vs un grupo control, con el fin de identificar que genes se encuentran significativamente expresados a la baja o a la alta en un tejido específico o muestra. Cuatro variables informativas resultantes del análisis con el programa GEO2R fueron consideradas para el estudio: la identificación del gen (ID); el valor-p, si era mayor a 0,05; el cambio logarítmico de la expresión de los genes, LogFC menores a 1 o mayores a -1; y el símbolo del gen. La información se almacenó en una hoja de cálculo de Excel.
6.2.3 Construcción de la red génica de asociaciones

Usando el servidor “miRTarBase”, versión 6.1 (http://mirtarbase.mbc.nctu.edu.tw/), se obtuvo una lista de genes diana de los miARN detectados experimentalmente en el análisis de laboratorio de las muestras de los pacientes diagnosticados con POAG. Esta lista de genes diana se comparó con la lista de genes obtenidas en el análisis con el programa GOE2R (Anexo III). Los genes que concordaron fueron sometidos al programa STRING, versión 10.0 (http://string-db.org/), el cual genera redes génicas de asociación, y de esta forma poder determinar, alguna vía de señalización asociada con angiogénesis que posiblemente estaría involucrada con la fisiopatología del POAG.

7. Resultados

7.1 Del análisis de laboratorio

En total fueron analizadas por arreglos de PCR la presencia de 20 moléculas de miARN asociados con angiogénesis en 12 muestras de sangre periférica, identificando la presencia de 8 de los 20 en los 6 pacientes con POAG. Los miARN detectados fueron: hsa-miR-16-5p en 3 de 6 muestras (50%); hsa-miR-126-3p en 3 de 6 muestras (50%); hsa-miR-20a-5p en todas las muestras (100%); hsa-miR-130a-3p en 3 de 6 muestras (50%); hsa-miR-143-3p en 3 de 6 muestras (50%); hsa-miR-27a-5p en 3 de 6 muestras (50%); y hsa-miR-92a-3p en todas las muestras (100%). Por su parte, en las 6 muestras control se detectó: hsa-miR-20-5p en 3 de 6 muestras (50%); hsa-miR-130-3p en todas las muestras (100%); hsa-miR-222-3p en todas las muestras (100%); y hsa-miR-143-3p en 3 de 6 muestras (50%), como se observa en la figura 5. De los resultados obtenidos se observa que el miR-92a-3p se detectó solo en las muestras de pacientes diagnosticados con POAG pero no en los participantes aparentemente sanos control (figura 5). Por el contrario, el miR-222-3p no se detectó en las muestras de pacientes diagnosticados con POAG pero si en los participantes aparentemente sanos control.
Figura 5. Porcentajes de detección de los miARN asociados angiogénesis. En la gráfica se observa la identificación cualitativa de los miARN en 12 muestras de sangre periférica, de las cuales 6 pertenecen a pacientes diagnosticados con POAG y 6 de participantes aparentemente sanos. En el eje Y se muestra el porcentaje de detección, mientras que el eje X representa los miARN evaluados.

7.2 Del análisis in silico

7.2.1 Total de archivos seleccionados
De un total de 271 bases de datos, se seleccionaron cinco que cumplían con los criterios de inclusión en sus archivos (Anexo II). Al realizar el análisis de expresión de ARNm en muestras de pacientes diagnosticados con POAG vs grupo control con el programa GEO2R, se encontró un número total de genes con cambios logarítmicos significativos en 2210, donde 927 genes presentaban con baja expresión y 1283 alta expresión con una \(p< 0.05 \) y \(>1 \) Log FC >-1. (Anexo III)

7.2.2 Identificación de los genes diana para miR-92a-3p
Se identificaron un total de 1643 genes diana para el miR-92a-3p. Al realizar la comparación con los genes con baja expresión encontrados en la interfaz Genome Expression Omnibus (GEO por sus siglas en ingles) para pacientes diagnosticados con POAG, se encontró concordancia en 38 genes (Tabla 2).
<table>
<thead>
<tr>
<th>Genes Blanco.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabla 2. Genes posiblemente silenciados por miR-92a-3p</td>
</tr>
<tr>
<td>ANKH</td>
</tr>
<tr>
<td>ASS1</td>
</tr>
<tr>
<td>ATP2B4</td>
</tr>
<tr>
<td>BAHCC1</td>
</tr>
<tr>
<td>BMP8A</td>
</tr>
<tr>
<td>CEP85</td>
</tr>
<tr>
<td>E4F1</td>
</tr>
<tr>
<td>EPB41L3</td>
</tr>
<tr>
<td>HBB</td>
</tr>
<tr>
<td>IGF1R</td>
</tr>
<tr>
<td>KANK2</td>
</tr>
<tr>
<td>KDM6B</td>
</tr>
<tr>
<td>KIF1A</td>
</tr>
<tr>
<td>KIFC1</td>
</tr>
<tr>
<td>MAU2</td>
</tr>
<tr>
<td>MEN1</td>
</tr>
<tr>
<td>MLLT4</td>
</tr>
<tr>
<td>NR1H4</td>
</tr>
<tr>
<td>PLXNA3</td>
</tr>
<tr>
<td>PRKCA</td>
</tr>
<tr>
<td>RASA3</td>
</tr>
<tr>
<td>RASAL2</td>
</tr>
<tr>
<td>RP2</td>
</tr>
<tr>
<td>SAP30</td>
</tr>
<tr>
<td>SCD</td>
</tr>
<tr>
<td>SELENBP1</td>
</tr>
<tr>
<td>SIK1</td>
</tr>
<tr>
<td>SOCS5</td>
</tr>
<tr>
<td>STK4</td>
</tr>
<tr>
<td>STMN3</td>
</tr>
<tr>
<td>SV2A</td>
</tr>
<tr>
<td>TACC1</td>
</tr>
<tr>
<td>TANC2</td>
</tr>
<tr>
<td>TBL1X</td>
</tr>
<tr>
<td>TONSL</td>
</tr>
<tr>
<td>TUBB2B</td>
</tr>
<tr>
<td>ZMYND8</td>
</tr>
<tr>
<td>ZNF174</td>
</tr>
</tbody>
</table>
7.3 Construcción de la red génica de asociación

De los 38 genes diana para miR-92a-3p que presentaron baja expresión al ser sometidos al programa STRING, determinó una red génica de asociación reportada como vía de señalización asociada con angiogénesis, la cual está conformada por los genes VEGFA, PLCG1, PRKCA, RAF1, MAP2K1 y MAPK3 (tabla 3), en donde la PRKCA es un gen diana para el miR-92a-3p.

<table>
<thead>
<tr>
<th>GEN</th>
<th>DESCRIPCIÓN</th>
</tr>
</thead>
</table>
| PLCG1 | *Fosfolipasa C, gamma 1*: Media la producción de las moléculas de segundos mensajeros diaciglicerol (DAG) e inositol 1,4,5-trifosfato (IP3).
Se activa en respuesta a la activación mediada por ligando de tirosina quinasas de tipo receptor, tales como PDGFRA, PDGFRB, FGFR1, FGFR2, FGFR3 y FGFR4. Juega un papel en la reorganización de la actina y la migración celular. |
| RAF1 | *V-raf-1 de la leucemia murina viral oncogén homólogo 1*: Serina / treonina-proteína quinasa que actúa como un enlace de regulación entre las Ras GTPasas asociadas a la membrana y la cascada de MAPK / ERK, y funciones críticas de enlace de regulación como un interruptor que determina las decisiones del destino celular incluyendo la proliferación, la diferenciación, la apoptosis, la supervivencia y la transformación oncogénica. Su activación inicia una cascada proteínas quinasas activadas por mitógenos (MAPK) |
| MAP2K1 | *Proteína quinasa quinasa activada por mitógeno 1*: Este factor de crecimiento induce la proliferación y migración de células endoteliales vasculares, y es esencial tanto para la angiogénesis fisiológica y patológica |
| VEGFA | *Factor de crecimiento endotelial*: Este factor de crecimiento induce la proliferación y migración de células endoteliales vasculares, y es esencial tanto para la angiogénesis fisiológica y patológica |
| PRKCA | *Proteína quinasa C, alfa*: Activados por calcio, fosfolípidos y diaciglicerol (DAG) dependiente de serina / treonina-proteína quinasa que está implicada en la regulación positiva y negativa de la proliferación celular, la apoptosis, la diferenciación, la migración y la adhesión, la tumorigénesis, la
hipertrofia cardíaca, la angiogénesis, la función plaquetaria y la inflamación, por fosforilación de objetivos tales como RAF1, BCL2, CSPG4, TNNT2 / cTNT, o la activación de la cascada de señalización que implica MAPK1 / 3 (ERK1 / 2) y RAP1GAP. |
8. DISCUSIÓN

En la enfermedad del POAG, fallas en la angiogénesis se puede asociar con un flujo incorrecto de sangre hacia las capas de la retina y hacia la cabeza del nervio óptico generando isquemia, y por lo tanto, afectando las células de la retina evitando un campo visual adecuado. (Venkataraman et al., 2010). Lo anterior, puede conllevar hacia una muerte celular programada por la falta de oxígeno y nutrientes en las regiones del ojo (Chung et al., 1999). Además, previos estudios han demostrado un papel importante de los miARN en el desarrollo de enfermedades vasculares asociadas con fallas en la angiogénesis al presentarse problemas en el crecimiento y remodelación de nuevos vasos sanguíneos a partir de los preexistentes ya que se requiere de una coordinación en la proliferación y migración de las células dentro de los crecientes brotes angiogénicos (Dang et al., 2013). Además, cuando no se presenta la angiogénesis ocurre una acumulación de varios tipos de colágeno como el I, III y IV, importantes para la filtración del humor acuoso lo que conlleva a un aumento de la PIO y por tanto a la progresión del glaucoma. Varios estudios han mostrado que reguladores críticos de la angiogénesis tales como el factor de crecimiento endotelial vascular (VEGF) y su receptor Flt1 aumenta su expresión después de la depleción de la enzima Dicer, la cual se encuentra implicada en la maduración de miARN y cada miARN tiene múltiples objetivos corriente abajo, por lo que se esperaría un gran impacto de Dicer para los procesos biológicos.

Los resultados del presente estudio sugieren que se presenta una expresión aberrante de un miARN asociados con angiogénesis en pacientes diagnosticados con POAG. Tal es el caso del miR-92a-3p que fue detectado en seis pacientes glaucomatosos pero no en personas sin glaucoma, a pesar que el número de pacientes es pequeño, el hecho de haber detectado el miR-92a-3p en todas las muestras de pacientes diagnosticados con POAG y en ninguna muestra control nos hace sugerir que este miARN podría estar participando en la etiología de la enfermedad, específicamente participando en la inhibición de la proteína quinasa C alfa (PRKCA) en la vía de señalización para proceso angiogenicos.
La inhibición de la expresión de PRKCA por el miR-92a3p, puede disminuir la señal dentro de las células de la retina que induce el factor de crecimiento endotelial vascular (VEGF) afectando por esta vía la formación de los vasos sanguíneos (Xu et al., 2008). Importante, la regulación del receptor de VEGF se ha visto comprometido en la vía de la angiogénesis pero en otros estudios estos hallazgos no se han podido corroborar, por lo tanto, regulación de VEGF podría ser un proceso dinámico que depende del tipo de estímulos recibidos (Urbich et al., 2008).

En el ojo, los elementos celulares de los capilares retinianos están compuestos por dos tipos de células: las primeras son los pericitos responsables de la integridad de la pared vascular; y las segundas son las endoteliales, en las cuales la vía de señalización por PRKCA-VEGF induce angiogénesis (Xu et al., 2008). Los miARN son detectados con alta frecuencia en células endoteliales, y estudios recientes sugieren que regulan los aspectos del desarrollo vascular y la angiogénesis. En las células endoteliales se activa el factor VEGF en respuesta a

![Figura 6. Red génica de la vía de señalización asociada con angiogénesis.](image)

El miR-92a3p reconoce e inhibe el ARNm del gen PRKCA lo que posiblemente estaría involucrada con la fisiopatología del POAG.
la activación de PKC. Igualmente, se ha reportado que el factor VEGF es importante en la remodelación de la matriz extracelular del ojo. En los seres humanos se han identificado cuatro isoformas que son; 121, 165, 189, y 206. De las cuales las isoformas 165 y 189 están estrechamente asociadas con la matriz extracelular. (Dang et al., 2013). La matriz extracelular es muy importante para el flujo de sustancias y componente en varias capas del ojo como la lámina cribosa, la cual permite el paso de los vasos sanguíneos hacia la retina.

Así en el presente estudio se propone que el miR-92a-3p es un regulador negativo de la angiogénesis ya que provoca la disminución en la activación de cascadas de señalización involucradas en la proliferación celular, adhesión y angiogénesis por lo cual la activación de RAF1, se verá afectada y consecuentemente disminuyendo la activación de la cascada de señalización MAPK/ERK, Sin embargo, Zhang et al, reporto que la expresión de miR-92a-3p en las células endoteliales puede asociarse con un efecto protector vascular frente al estrés oxidativo, (Zhang et al., 2014), clasificándolo como pro-apoptotico. La anterior discordancia se puede explicar bajo la hipótesis de que en pacientes con glaucoma el miR-92a-3p podría mostrar una expresión aberrante circulando en sangre como un indicativo de fallas en su regulación. Adicionales estudios son necesarios para aclarar el efecto de miR-92a-3p tiene en la etiología del POAG.

9. CONCLUSIONES

La técnica molecular por arreglos de PCR nos permitió determinar la presencia de 8 moléculas de miARN asociados con angiogénesis en 12 muestras de sangre periférica de pacientes diagnosticados con POAG, siendo el miR-92a-3p el detectado en el 100% de las muestras. El análisis de red génica de asociación señaló una vía de comunicación asociada con angiogénesis conformada por los genes VEGFA, PLCG1, PRKCA, RAF1, MAP2K1 Y MAPK3 en donde la PRKCA es un gen diana para el miRNA-92a-3p. Adicionales estudios son necesarios para entender en que otras vías de señalización participan los miARN y como su expresión aberrante se asociación con la etiología del glaucoma.
10. RECOMENDACIONES

Se recomienda continuar con los estudios de redes génicas de asociación aplicados a otros procesos biológicos en donde los miARNs pueden estar relacionados con el desarrollo de la enfermedad del glaucoma.

Analizar en humor acuoso la expresión de miARN en pacientes diagnosticas con glaucoma para establecer una correlación entre expresión local de estos ARNs pequeños con lo detectado en sangre periferica.

Escalar el analisis molecular a estudios poblaciones con el fin de investigar si los miARN detectados en el presente estudios podrían ser biomarcadores de riesgo para la enfermedad.
11. REFERENCIAS BIBLIOGRÁFICAS

Omar Abou, H. R. (2012). Estudio de correlación entre función retina determinada con perimetría (octopus tg1) y pruebas objetivas en medición de capa de fibras nerviosas (tomografía de coherencia óptica) y cabeza del nervio óptico (tomografía de láser barrido hrt . (Doctorado).

development through MITF, BCL2 and cyclin D2. PLoS One, 7(7), e40967. doi: 10.1371/journal.pone.0040967

12. ANEXOS

I. Acta de aceptación del comité de ética

Comité Institucional de Revisión de Ética Humana
Facultad de Salud

ACTA DE APROBACIÓN N° 05-014

Proyecto: PREVALENCIA DE GLÁUCOMA EN PACIENTES CON HIPERTENSIÓN Y DIABETES EN 6 CIUDADES DE COLOMBIA

Sometido por: ALEXANDER MARTINEZ/ CARLOS RIVERA/ ANDRES CASTILLO/ FABIAN MENDEZ/ NATHALIE ABRAMS

Código Interno: 030-014 Fecha en que fue sometido: 25 02 2014

El Consejo de la Facultad de Salud de la Universidad del Valle, ha establecido el Comité Institucional de Revisión de Ética Humana (CIREH), el cual está regido por la Resolución 008430 del 4 de octubre de 1993 del Ministerio de Salud de Colombia por la cual se establecen las normas científicas, técnicas y administrativas para la investigación en salud; los principios de la Asamblea Médica Mundial expuestos en su Declaración de Helsinki de 1961, última revisión en 2002; y el Código de Regulaciones Federales, título 45, parte 46, para la protección de sujetos humanos, del Departamento de Salud y Servicios Humanos de los Institutos Nacionales de Salud de los Estados Unidos 2000.

Este Comité certifica que:

1. Sus miembros revisaron los siguientes documentos del presente proyecto:
 - Resumen del proyecto
 - Formato de consentimiento informado
 - Folleto del investigador (si aplica)
 - Resultados de evaluación por otros comités (si aplica)

2. El presente proyecto fue evaluado y aprobado por el Comité:

3. Según las categorías de riesgo establecidas en el artículo 11 de la Resolución N° 008430 de 1993 del Ministerio de Salud, el presente estudio tiene la siguiente Clasificación de Riesgo:
 - SIN RIESGO
 - RIESGO MÁS DEL MÁS

4. Que las medidas que están siendo tomadas para proteger a los sujetos humanos son adecuadas.

5. La forma de obtener el consentimiento informado de los participantes en el estudio es adecuada.

6. Este proyecto será revisado nuevamente en la próxima reunión plenaria del Comité, sin embargo, el Comité puede ser convocado a solicitud de algún miembro del Comité o de las directivas institucionales para revisar cualquier asunto relacionado con los derechos y el bienestar de los sujetos involucrados en este estudio.

7. Informará inmediatamente a las directivas institucionales:
 - Todo descanso de las investigadores a las solicitudes del Comité.
 - Cualquier suspensión o terminación de la aprobación por parte del Comité.

8. Informará inmediatamente a las directivas institucionales toda información que reciba acerca de:
 - Lesiones a sujetos humanos.
II. Artículos encontrados en el GEO usados para el estudio.

<table>
<thead>
<tr>
<th>No DE ACCESO</th>
<th>Artículo</th>
<th>Autor</th>
<th>Año de publicación</th>
<th>Caso Glaucoma</th>
<th>Caso Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series GSE9944</td>
<td>Gene expression data on human optic nerve head astrocytes in Caucasian and African americans with or without glaucoma</td>
<td>Lukas TJ, Miao H, Chen L, Riordan SM et al.</td>
<td>2008</td>
<td>13</td>
<td>6</td>
</tr>
<tr>
<td>Series GSE9963</td>
<td>Gene expression data on human optic nerve head astrocytes</td>
<td>Lukas TJ, Miao H, Chen L, Riordan SM et al.</td>
<td>2008</td>
<td>13</td>
<td>6</td>
</tr>
<tr>
<td>Series GSE7144</td>
<td>TGF-beta1 and 2 treatment of human trabecular meshwork cells</td>
<td>Russell P</td>
<td>2007</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Series GSE45570</td>
<td>An Investigation of Global Gene Expression Patterns in Glaucoma and Ocular Hypertension Derived Optic Nerve Heads</td>
<td>Ahram DF, Cook AC, Young KH, Kuehn MH</td>
<td>2013</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>
III. Lista de genes con baja expresión según las bases de datos del GEO procedentes de muestras obtenidas de pacientes diagnosticados con POAG.

<table>
<thead>
<tr>
<th>Nombre o Código</th>
<th>Valor p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,00</td>
</tr>
<tr>
<td>ANKH</td>
<td>STAT1</td>
</tr>
<tr>
<td>C1QTNF3</td>
<td>CDC25C</td>
</tr>
<tr>
<td>TNFRSF25</td>
<td>PCDH1</td>
</tr>
<tr>
<td>MXRA8</td>
<td>RPS6K6A2</td>
</tr>
<tr>
<td>OLFML1</td>
<td>HIP1</td>
</tr>
<tr>
<td>CLEC11A</td>
<td>ATP2B4</td>
</tr>
<tr>
<td>EPDR1</td>
<td>IFIT2</td>
</tr>
<tr>
<td>AMIGO2</td>
<td>GTGTC2</td>
</tr>
<tr>
<td>MMP11</td>
<td>NR_033787</td>
</tr>
<tr>
<td>FRY</td>
<td>INPP4A</td>
</tr>
<tr>
<td>ZDHHC14</td>
<td>OSGN2</td>
</tr>
<tr>
<td>COCH</td>
<td>PTGIR</td>
</tr>
<tr>
<td>NEB</td>
<td>FAM162A</td>
</tr>
<tr>
<td>BMP1</td>
<td>NM_004984,AB290174</td>
</tr>
<tr>
<td>SLC12A2</td>
<td>ITGA3</td>
</tr>
<tr>
<td>CRIP2</td>
<td>HMG1A</td>
</tr>
<tr>
<td>CYFP2</td>
<td>LYL31</td>
</tr>
<tr>
<td>FRZB</td>
<td>PRKAB2</td>
</tr>
<tr>
<td>ITGB5</td>
<td>RPS17</td>
</tr>
<tr>
<td>TEK</td>
<td>MICAL2</td>
</tr>
<tr>
<td>HLA-DMB</td>
<td>FANCI</td>
</tr>
<tr>
<td>SELENBP1</td>
<td>KDM5D</td>
</tr>
<tr>
<td>AQP1</td>
<td>IGFBP2</td>
</tr>
<tr>
<td>SV2A</td>
<td>SEMA3A</td>
</tr>
<tr>
<td>IDS</td>
<td>BAHCC1</td>
</tr>
<tr>
<td>CSPG4</td>
<td>MAOA</td>
</tr>
<tr>
<td>CHST15</td>
<td>TESC</td>
</tr>
<tr>
<td>WW2P</td>
<td>TMEM97</td>
</tr>
<tr>
<td>PLXNA3</td>
<td>TNFSF4</td>
</tr>
<tr>
<td>DMPK</td>
<td>COL8A1</td>
</tr>
<tr>
<td>INHBA</td>
<td>CBBL1</td>
</tr>
<tr>
<td>PLA2G15</td>
<td>MLPH</td>
</tr>
<tr>
<td>LAMA5</td>
<td>CYB5A</td>
</tr>
<tr>
<td>CDH2</td>
<td>MAP7</td>
</tr>
<tr>
<td>FZD7</td>
<td>COL14A1</td>
</tr>
<tr>
<td>VIM</td>
<td>ADCY3</td>
</tr>
<tr>
<td>ABCB4</td>
<td>PSTP1P1</td>
</tr>
<tr>
<td>PDK1</td>
<td>ALDH3B1</td>
</tr>
<tr>
<td>OPCML</td>
<td>LIN00341F1</td>
</tr>
<tr>
<td>PTGER1</td>
<td>MAP3K5</td>
</tr>
<tr>
<td>PLEX</td>
<td>TIPRL</td>
</tr>
<tr>
<td>SMTN</td>
<td>OASL</td>
</tr>
<tr>
<td>STAT1</td>
<td>PKNOX1</td>
</tr>
<tr>
<td>ACAN</td>
<td>CRYM</td>
</tr>
<tr>
<td>PKG1</td>
<td>GRP</td>
</tr>
<tr>
<td>SYNE2</td>
<td>EXOC3</td>
</tr>
<tr>
<td>ITGA6</td>
<td>PDE1A</td>
</tr>
<tr>
<td>ABCB9</td>
<td>FLCN</td>
</tr>
<tr>
<td>STAT4</td>
<td>HAUS5</td>
</tr>
<tr>
<td>CALM1</td>
<td>RTN1</td>
</tr>
<tr>
<td>CSPG4</td>
<td>OTOF</td>
</tr>
<tr>
<td>HPSE</td>
<td>TTC38</td>
</tr>
<tr>
<td>GMPR</td>
<td>NOL12</td>
</tr>
<tr>
<td>HIST1H2BM</td>
<td>ARL4C</td>
</tr>
<tr>
<td>ITGA6</td>
<td>ALDH3A2</td>
</tr>
<tr>
<td>CD28</td>
<td>CXCL8</td>
</tr>
<tr>
<td>PVR</td>
<td>DDX54</td>
</tr>
<tr>
<td>GAS1</td>
<td>KCS1B</td>
</tr>
<tr>
<td>NIPAL3</td>
<td>SCEL</td>
</tr>
<tr>
<td>ADCK4</td>
<td>MEN1</td>
</tr>
<tr>
<td>NOL12</td>
<td>PLK4</td>
</tr>
<tr>
<td>NM_206880</td>
<td>ACVR2B-A</td>
</tr>
<tr>
<td>IFITM1</td>
<td></td>
</tr>
<tr>
<td>Gene</td>
<td>Gene</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>SLIT3</td>
<td>SAMHD1</td>
</tr>
<tr>
<td>SNED1</td>
<td>ZDHHC11</td>
</tr>
<tr>
<td>PSMB9</td>
<td>OLFML1</td>
</tr>
<tr>
<td>RGS16</td>
<td>ATP2B4</td>
</tr>
<tr>
<td>THBD</td>
<td>NMT2</td>
</tr>
<tr>
<td>HSD11B1</td>
<td>VASH2</td>
</tr>
<tr>
<td>RG5</td>
<td>MKRN1</td>
</tr>
<tr>
<td>STAT1</td>
<td>GDPK1L</td>
</tr>
<tr>
<td>TRIOBP</td>
<td>ELN</td>
</tr>
<tr>
<td>CD302</td>
<td>PRKCA</td>
</tr>
<tr>
<td>NR1H4</td>
<td>ELL</td>
</tr>
<tr>
<td>RGS5</td>
<td>STK4</td>
</tr>
<tr>
<td>INA</td>
<td>MALL</td>
</tr>
<tr>
<td>BNIP3</td>
<td>ALDH1A3</td>
</tr>
<tr>
<td>PPP1R12B</td>
<td>PKM</td>
</tr>
<tr>
<td>PDGF</td>
<td>SERPINE1</td>
</tr>
<tr>
<td>FA</td>
<td>CE10P4</td>
</tr>
<tr>
<td>SIK2</td>
<td>CNGA3</td>
</tr>
<tr>
<td>UBE2L6</td>
<td>RARRES3</td>
</tr>
<tr>
<td>KN1G</td>
<td>CH3L1</td>
</tr>
<tr>
<td>TNFAIP8</td>
<td>CA12</td>
</tr>
<tr>
<td>CTSK</td>
<td>NOKIPSD</td>
</tr>
<tr>
<td>PRKCH</td>
<td>PLSCR1</td>
</tr>
<tr>
<td>LMOD1</td>
<td>GSTM2</td>
</tr>
<tr>
<td>STAT1</td>
<td>IGFR1</td>
</tr>
<tr>
<td>PLA2G4C</td>
<td>NM_213957</td>
</tr>
<tr>
<td>KMT2B</td>
<td>GNA12</td>
</tr>
<tr>
<td>HOXC13</td>
<td>SOC55</td>
</tr>
<tr>
<td>RHOB</td>
<td>PLXNC1</td>
</tr>
<tr>
<td>RHOB</td>
<td>ARAPI</td>
</tr>
<tr>
<td>SYT1</td>
<td>STOM</td>
</tr>
<tr>
<td>MGLL</td>
<td>ANK1</td>
</tr>
<tr>
<td>P4HA1</td>
<td>NOP16</td>
</tr>
<tr>
<td>CAT</td>
<td>ETFB</td>
</tr>
<tr>
<td>A2M</td>
<td>COL1A1T</td>
</tr>
<tr>
<td>NMT2</td>
<td>CRIP1</td>
</tr>
<tr>
<td>RGS7</td>
<td>CLDN8</td>
</tr>
<tr>
<td>ERG</td>
<td>EML2</td>
</tr>
<tr>
<td>TACC2</td>
<td>SHC3</td>
</tr>
<tr>
<td>PKFP</td>
<td>ARID5B</td>
</tr>
<tr>
<td>BCL2L1</td>
<td>NGDN</td>
</tr>
<tr>
<td></td>
<td>FRMD4B</td>
</tr>
<tr>
<td></td>
<td>ENOSF1</td>
</tr>
<tr>
<td></td>
<td>GAS1</td>
</tr>
<tr>
<td></td>
<td>CAPN6</td>
</tr>
<tr>
<td></td>
<td>NR_002190</td>
</tr>
<tr>
<td></td>
<td>PDA1P</td>
</tr>
<tr>
<td></td>
<td>SLC43A3</td>
</tr>
<tr>
<td></td>
<td>CPNE6</td>
</tr>
<tr>
<td></td>
<td>MCM5</td>
</tr>
<tr>
<td></td>
<td>ACAN</td>
</tr>
<tr>
<td></td>
<td>XCR1</td>
</tr>
<tr>
<td></td>
<td>SFRP1</td>
</tr>
<tr>
<td></td>
<td>MAN1C1</td>
</tr>
<tr>
<td></td>
<td>FAM127B</td>
</tr>
<tr>
<td></td>
<td>LOC100510519</td>
</tr>
<tr>
<td></td>
<td>MTUS1</td>
</tr>
<tr>
<td></td>
<td>COL21A1</td>
</tr>
<tr>
<td></td>
<td>NM_005272</td>
</tr>
<tr>
<td></td>
<td>LIMD1</td>
</tr>
<tr>
<td>NM_206963</td>
<td>CARHSP1</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
</tr>
<tr>
<td>CTGK</td>
<td>EFNb3</td>
</tr>
</tbody>
</table>