
Component Types Qualification in Java Legacy Code
Driven by Communication Integrity Rules

Hugo Arboleda
Universidad Icesi, DRISO Group

Calle 18, No. 122-135
Cali, Colombia

hfarboleda@icesi.edu.co

Jean-Claude Royer
ASCOLA Group, Mines de Nantes - INRIA

4 Rue A. Kastler
44307 Nantes, France

Jean-Claude.Royer@mines-nantes.fr

ABSTRACT
Component Based Software Engineering is a way to improve soft-
ware modularization and to embed architectural concerns in the
source code. Making explicit the architectural concerns in code
helps to mitigate the problem of architectural erosion. The restruc-
turing of legacy code with components in mind requires the use of
tools to assess compliance with component programming princi-
ples. The property of communication integrity is one of the major
principles for implementing software architectures. However, there
is a paucity of tools for assessing the quality of code components.
To cope with this issue, we define a component model in Java and
a tool for identifying component types, which relies on a set of
rules to statically check potential violations of the communication
integrity property in Java source code. We illustrate its application
with a case study and report the results of our experiments with it.

Categories and Subject Descriptors
D.2.11 [Software Architecture]: Languages; D.3.3 [Languages
Constructs and Features]: Data types and structures

General Terms
Languages, Experimentation

Keywords
Architecture, communication integrity property, component based
programming, component type, data type, assessing quality.

1. INTRODUCTION
Software applications must be maintained under the dynamic

conditions of the real world, to improve security, performance or
other quality attributes, and to integrate new functionalities. A side
effect of this evolution is architectural erosion, namely, the erosion
which occurs when a system architecture gradually degrades as de-
velopers make changes to the system that violate the original ar-
chitectural intent. Software architecture plays a crucial role in sev-
eral aspects of software development [20]: understanding and doc-
umenting, construction, evolution, analysis and verification, reuse

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISEC’11, February 23-27, 2011 Thiruvananthapuram, Kerala, India
Copyright 2011 ACM 978-1-4503-0559-4/11/02 ...$10.00.

and management. Developers unintentionally degrade the architec-
ture because they are either not aware of the architectural intent of
the system under development, or they do not completely under-
stand the system architecture. A typical consequence is that the
system becomes gradually more difficult to maintain and evolve
while more communication channels (e.g. method calls) are estab-
lished among all parts of the system. New languages and develop-
ment methods have been proposed for the benefit of software prac-
titioners, to mitigate architectural erosion and to support software
maintenance and evolution. They make explicit the architectural
decisions both in architectural models and source code, and pro-
mote software modularization. Furthermore, they allow checking
of architectural constraints and the application of strict program-
ming principles like the communication integrity property [27, 6].
Component Based Software Engineering (CBSE) [29] is a branch
of software engineering which is mainly concerned with software
modularization, separation of concerns, and architecture.

Here, we consider the problem of re-engineering legacy code
with component based programming and how to asses the quality of
the resulting application. Such a process cannot be managed with-
out tool support [22] and assessing the CBSE resulting quality is es-
sential to guiding the restructuring process. Metrics based tools are
possible, however, they are far from perfect [28, 21] and they are
not sufficient to assess semantic properties like type-checking rules
or the communication integrity property. One alternative could be
to use tools for components recovery and architecture reconstruc-
tion from source code. A number of recent proposals provide tools
for extracting components or architecture that are suitable to mod-
ern component languages with component hierarchies or compos-
ites [12, 13, 11, 8]. However, extracting tools are not adequate
to assess the component quality of a program since they are de-
voted to identifying parts in code which can become components
after restructuring. Checking tools, such as PMD [2], findbugs [1],
or architectural compliance checking tools, such as the one pre-
sented in [24], could be used. However, to our current knowledge,
there is no tool to assess the quality of CBSE applications with
first-class composites and subtyping. None of the existing tools is
based on programming rules that explicitly ensure the communica-
tion integrity property. In this paper, we focus on the definition of
a method and its corresponding tool to inform developers about the
current quality of the components types. We provide information
about data types, component types, and the provided and required
services, among others. To qualify component types and to sep-
arate them from data types we rely on the the so-called commu-
nication integrity (CI for short) property. This states that the real
communication links have to be compliant with the static system
architecture. The CI property emphasizes the need to avoid hid-
den communication channels. In other words, two components can

155

communicate only if a communication channel has been formally
defined between them. Our specific contributions in this paper are:
i) to make explicit the requirements of our method and analyzer
tool and to demonstrate that current extracting tool or metrics-based
tools are not adequate for the task that we carry out, ii) to sketch a
Java component model which allows first-class components, com-
ponent types, subtyping, and a straight implementation in Java, and
iii) to propose a set of rules to prevent CI violations. The rules
set reuses rules previously presented in ArchJava [6, 5], but also
adds new ones. Finally, we present a first evaluation of our tool:
we measure the component types rate of several applications, re-
structure some applications, and compare the tool result with the
SoMoX component recovery tool.

The remainder of this paper is organized as follows. Section 2
gives the context of this study and describes introductory examples
to motivate our study. We present related work in Section 3. In Sec-
tion 4, we describe the principles of our component model and give
details of the rules we use in our tool to prevent communication
integrity violations. Section 5 discusses a restructuring example
and presents elements to evaluate our tool. Section 6 contains a
summary of our contribution and sketches future work.

2. BACKGROUND AND MOTIVATIONS
This section presents the CBSE background as well as our moti-

vations and the need to asses CBSE quality.

2.1 CBSE Principles
CBSE is not only a pure programming concept but also an ar-

chitectural approach. It introduces a more strict way to program
applications than Object-Oriented Programming (OOP), for exam-
ple to allow automatic checking of architectural properties. CBSE
aims to improve software development practice by proposing a de-
velopment model where systems are assembled from components
rather than programmed from scratch. CBSE claims to reduce de-
velopment costs and improve the reliability of the resulting system.
We propose here a basic and generic definition of the main CBSE
elements. There are many proposed models that implement these
main elements and others about which we will not enter into details
here (e.g. the notions of ports and connectors). For a recent review
of component models see [15], but here we focus on models with
interface and hierarchical composition. In CBSE, systems are built
from reusable software components that require or provide services,
and that have well defined communication channels between them.
Bosch, Szyperski and Weck [9] propose the following definition of
components: “A software component is a unit of composition with
contractually specified interfaces and explicit context dependencies
only. A software component can be deployed independently and is
subject to composition by third parties,” as quoted in [14]: this def-
inition is the most frequently used today. This definition implies
that i) a software component is a unit, i.e. it cannot be divided and
it is self contained (except for its declared required interface), ii) it
specifies an interface (or interfaces) of services it provides, and it
is bound by contract to implement at least this (these) interface(s),
iii) it specifies context dependencies, which means services it re-
quires to work properly, and iv) it may be part of a larger composite
component. A composite component is built from other compo-
nents, a component which is not a composite is called a primitive
component. The specification of the provided and required ser-
vices make up the interface of the component. Typically, a service
will be implemented by a routine or a method accessible from out-
side the component. These properties make any component sub-
stitutable by other components that provide or require the same or
compatible services. We should distinguish component types and

instances [29]. A component type is a generator for component in-
stances. Finally, as in [5, 16], we find it valuable to consider the
notion of subtyping as a formal way to organize types in the appli-
cations.

Concomitant to CBSE is the notion of component based archi-
tecture [14]. A component based architecture specifies how com-
ponents will be arranged to form the system. It includes the spec-
ification of the components and their interfaces (provided and re-
quired services); the communication channels between them, that is
to say, from what other components a component may require ser-
vices (and which ones), and to what other components it may pro-
vide services (and which ones). One important property a compo-
nent architecture must satisfy is the communication integrity prop-
erty [27]. That is to say, it must ensure that the implemented com-
ponents do not communicate between themselves in ways that vi-
olate the intended control flow rules of the architecture. In other
words, two components can communicate only if a communication
channel has been formally defined between them, there are no hid-
den communication channels. This is one of the strengths of the
component approach; it allows designers to explicitly specify and
automatically check some of the architectural decisions, thus ac-
tively limiting the chances of architecture erosion. Regarding the
maintainability of applications, the concept of architecture plays a
role similar to general documentation. The architectural descrip-
tion can be outside the source code, inside the source code, or both.
The use of the CI property forces this document to be part of the
code and consistent with it. A previous discussion related to soft-
ware quality criteria and the CI property appeared in [3].

2.2 Assessing CBSE Quality
In the context of reverse engineering we need tooling support to

evaluate the quality of applications and to guide the restructuring
process. To assess the quality of CBSE code, we could use either
metrics tools, or components extracting tools, or source code ana-
lyzers, or architecture compliance checkers. Software components
and architectures metrics are still a research area. To the best of our
knowledge, there exist two surveys [28, 21] on software component
metrics. In its conclusion, [28] states that “more work is needed”
and the authors note a lack of automated tools. Goulao and Abreu,
in [21] reviewed and compared the existing approaches. Amongst
other conclusions, they note: “there is a lack of maturity in existing
proposals.” Metrics tools could give some useful information about
the code structure. Nevertheless, there are several important tasks
for which they are inadequate. First, these tools are relevant to mea-
sure global qualities of a code such as reusability, maintainability
or evolvability. They are not adequate to check semantic properties
such as those ensuring that: component types do not appear in pub-
lic services, component types do not inherit from a data type, etc.
Currently, existing approaches do not cope with component sub-
typing: this could seriously affect metrics definitions. Component
and composite types extracting tools [13, 12, 8] are generally based
on metrics. They could be used to extract components and then to
evaluate the quality of the result. However, they are devoted to find
new component types in source code that is not necessarily CBSE
code, or not designed with the required rigor. These kinds of tools
are able to collect components services and to suggest clusters, ag-
gregating classes, even if there are no components in the code. Our
study in Section 5 confirms that they are not suitable for our pur-
pose. The type of semantic properties we want to check are usually
verified by tools for the static analysis of the source or byte code, as
in the PMD [2], or findbugs [1] tools. Our survey of these tools do
not reveal an adequate candidate to assess CBSE quality, or even
to ensure good programming style with hierarchical components.

156

Finally, architecture compliance checkers, like SAVE [24], are de-
voted to verifying the conformity of a given architecture with the
one extracted from the source code. They rely on a light component
model with neither subtyping nor first-class components. Further-
more they require a given architecture which we may not have at
hand.

2.3 The Communication Integrity Property
A tool is required to guide the restructuring process that iden-

tifies types respecting the communication integrity property and
related good programming practices. The CI property is a sim-
ple, abstract and yet characteristic property of CBSE. Our idea is
to consider a type as a component type if it is not responsible for
CI violations. Conversely a data type can be used to build hidden
channels. CI prevention covers various cases and some are known
to be good programming principles, for instance, to prohibit public
fields in a type definition.

Listing 1: Sample Code
public class A {

public A(B b) { this.theb = b; }
public A getIt() { return this; }
private void setIt(A a) { ... }

} // end A

To be more concrete, let us consider the Java code example in List-
ing 1. Assume we want class A to become a component type. Fol-
lowing previous work, [27, 6, 5], it is possible to statically verify
the CI property if a component type never appears as parameter
or resulting type in a service. Thus, the developer should note
that the getIt method violates this CI rule and should modify
the interface of this type. Private or protected methods, for exam-
ple setIt, can have component types in their signatures provided
that these methods are only called on this or super. This rule
prevents the exchange of component references between compo-
nents of the same type. Let us consider a more complex example

Figure 1: A UML Sample.

with the UML diagram in Figure 1. Arrays allow direct access to
their inner values, thus owning an array of A enables direct access
to an A reference. Another component could capture such an A
reference. Then it could send a message defined in A and build a
hidden channel from itself to the A component instance. Thus A
should be considered as a data type. But, this is also true for class
C, since by polymorphism a C reference could be used in place of
an A reference and then the same construction as above is possi-
ble. This problem occurs also for the composition part D of class C.
Methods of class C can access the D instances, and a longer hidden

communication channel can be built. As we can see here, viola-
tions propagate along subtyping and composition links. Note that
there is no violation regarding the B type, it could be a component
type. Even supposing that an OO program is implemented with a
clear separation of components and data types, there are numerous
ways to establish uncontrolled communication channels: i) passing
a reference to a “component” object as a method’s argument to an-
other “component”; ii) encapsulating a “component” object into a
“data type” object, and passing this one around; iii) having a “com-
ponent” inheriting from a “data type” object and casting it to “hide”
its component nature; iv) using data sharing between two “compo-
nent” objects as a hidden communication channel; or v) one could
even use the reflexive API (in the case of Java). We should add to
this list some specific cases related to language features, such as
inner classes, exception classes, or generic definitions. These CI
violations are, without a tool, difficult to evaluate precisely. The
reader might think that in most of the programs there are only data
types, never component types. Our experiments in Section 5 show
that this is not true: often, many component types exist. They usu-
ally appear in the top layer of any OOP applications, but they could
be more numerous if the application was designed carefully or with
components in mind. Summarizing our requirements for such a
tool: i) It has to analyze Java code and qualify component and data
types; ii) It has to be based on some strong semantic property, the
CI property seems well-suited to that; iii) It has to provide infor-
mation about potential violations of the CI property and its conse-
quences; iv) It has to be as efficient as possible; v) It could provide
more information about various related problems, such as commu-
nications outside of the component boundary, cycles in the com-
positions of components, subtyping problems, and direct access to
attributes, among others.

3. RELATED WORK
In CBSE reverse-engineering, the concepts of component and ar-

chitecture vary from one approach to another. For example, in [23],
design components are high level concepts close to design patterns,
but they are not abstract components. There has been a lot of re-
search on architecture and component recovery in the reverse en-
gineering community (see Koschke, [26] and [25], for a review of
the field). However, the problems they tackle are different. Ar-
chitecture recovery: typically tries to partition the set of software
elements of a system into various coherent subsets. For this, it
may use clustering to group together the elements that have more
things in common. Component recovery: typically tries to group
constants, variables and routines of a procedural source code into
objects or classes. For this it considers what variables or constants
are accessed by routines, and may also use clustering of variables
and constants. This is far from our preoccupation, as we work from
an object-oriented system assuming that the classes correspond (or
may correspond) to components. We are not trying to re-group
things together, but rather to identify types that have component
properties. Washizaki et al. [34] propose to extract JavaBeans com-
ponents of Java programs. Only the structure is abstracted, while,
in addition, we consider the communication integrity property. Our
analysis of the composite structure is comparable to their structural
clustering algorithm but we simplify by assuming that the compo-
nent structure is built from the class fields. Favre et al. [18] de-
scribe how they (manually) build a meta-model from a component
based source to help understand the system and help build reverse
engineering tools for that system.

Component or architecture recovery tools suitable to component
languages with component hierarchies are closely related to our
work. We are interested in static analysis since it provides ab-

157

stract and stable information about the structure and behavior of
the code. [13, 12, 11, 8] propose automatic and static approaches,
while [33] proposes a dynamic one. Chouambe et al. have ob-
jectives very similar to ours, however, they chose to extract the
components from metrics. SoMoX [8] (SOftware MOdel eXtrac-
tor) is a part of the Palladio tool suite developed at the Karlsruhe
Institute of Technology. It is the successor of the ArchiRec tool
which was described in [13]. This tool is able to analyze C++,
Delphi, and Java source code. The tool defines an iterative reverse
engineering process based on the Palladio Component Model. It
collects the provided and required interfaces associated to every
class in the Java application. A primitive component type is a class
with at least one public service. This leads to a first list of primi-
tive component types. The extraction of composite types considers
composition hypotheses, but for complexity reasons the combina-
tions are restricted to pairs of component types. These pairs are
compared based on several metrics dedicated to measure various
aspects, for instance, coupling, name resemblance, instability and
abstractness. SoMoX uses a formula taking into account the met-
rics inter-dependencies to rate the composition hypothesis. Once
the primitive component types are extracted, an iterative process is
responsible for the identification of the composites using the com-
bined metrics to compute a global score. This process is also able to
detect composition of more than two components. The discovering
process is iterated several times to suggest higher-level composi-
tions until no new composite is found. We did some comparisons
with SoMoX in our evaluation section, see Section 5. The work
of Chardigny [12, 11] is relevant for our study. Their approach,
called ROMANTIC, focuses on a quasi-automatic extraction of a
component-based architecture from an existing object-oriented sys-
tem. The ROMANTIC tool also uses metrics, but relies on a dif-
ferent approach than clustering. The first step of the extraction is
defining a correspondence model between object concepts and ar-
chitectural ones. This correspondence is elaborated by the archi-
tect. Then the tool validates this correspondence using predefined
guides based on semantic and qualities of the architecture. The
process selects among all the architectures that can be abstracted
from a system, the best one according to the set of guides. The
guides are assumed to be measurable constraints to model the ex-
traction process as a balancing problem of these competing con-
straints. The extraction problem is a search-based one and uses the
Low-Temperature Simulated Annealing algorithm. The currently
available information does not provide performance measures, and
the approach is costly, at least from a theoretical point of view.
However, ROMANTIC is not yet publicly available to compare it
with others.

In [7] we presented a first version of our tool with the objective
to extract component types from Java applications. Experimenting
on several middle size case studies we concluded that the tool could
recognize primitive component types. But we could not recognize
composite types since they were often implemented in a different
way.

In their paper Bowman et al. [10] study various ways to extract
models from Java code. Two approaches are possible: static or
dynamic analysis. Static analysis usually gives more abstract in-
formation. Dynamic analysis depends on the execution context and
may provide very accurate information about polymorphic call, dy-
namic types of objects, and information related to the use of the
reflective Java API. However, it usually produces a huge quantity
of information that one must filter. The model sought by [10] is a
simple entity relationship model but it is not too far from a compo-
nent model. The conclusion from [10] is that: if static analysis is
sufficient then disassembling (Java byte code) is probably the best

choice. Choosing between static or dynamic analysis is still a mat-
ter of opinion. For instance, [19] considers that runtime analysis
or profiling is needed, since types and objects may be dynamically
created.

We should also mention work around ArchJava [6, 5], a Java ex-
tension which enforces integrity of the architectural flow of com-
munications. AliasJava [4] is as an extension of ArchJava allowing
the detection of communication through shared data. In [3], Abi-
Antoun et al. manually re-engineered a Java legacy system into
an ArchJava system with explicit (and enforceable) definition of
control flow and data sharing. Enforcing communication integrity
and making explicit data sharing is challenging in programming
languages with objects and references. This corresponds closely to
our final objective although the work presented here is only the first
step toward this objective. On the issue of the integrity of the archi-
tectural flow, the rules used in this paper are inspired by those used
in ArchJava. The rules for method signatures and composition are
the same. We are more liberal on the external types analysis and on
constructors but stricter on downcast checking. Here we introduce
new rules for generics. The main difference with the ArchJava lan-
guage is that we define a kind of inference system mining for data
types in pure Java code and propagating this information along in-
heritance, composition, and coping with most of the Java features.

4. THE QUALIFICATION RULES
In this section we present the model underlying our tool and we

detail its set of CI rules. This tool, called JCE, is an Eclipse plu-
gin devoted to analyze and report potential violations of the com-
munication integrity property, its consequences and other related
CBSE programming practices problems. This tool is based on a
strict component model with a straightforward implementation in
Java. All of its features have a direct correspondence to Java con-
structions. The underlying component model relies on the follow-
ing assumptions: i) component types are true types, i.e. that can
be instantiated to generate component instances, ii) they commu-
nicate via a strict message passing policy, iii) they can be either
concrete or abstract component types, iv) they support subtyping,
and v) composites are built from a class structure containing sub-
components. The qualifying process of our tool is split into two
steps: i) mining the code to identify the relevant elements of the
component model and ii) running rules to identify data and compo-
nent types as well as to collect CI violations.

4.1 Mining the CBSE Model
Since our approach relies on static analysis of source code, it is

based on types rather than instances. Our mining process collects
classes of any kind (generics and nested classes) and also inter-
faces, to build the set of types of interest in the source code. These
types are tagged as abstract or concrete according to the abstract
modifier in the source code. We define the composition structure
of a type as the types of its fields or attributes. We consider the max-
imal structure, which means we group all the defined attributes and
the inherited ones, except the inherited private fields since, in Java,
they cannot be accessed in the subclasses. A service is a public or a
default method. A profile is a method signature, that is, a method’s
name with its parameter types and resulting type (as usual we use
void for procedures). We call a wrong profile a profile in which
a type of interest appears as parameter or as resulting type. These
signatures are important since they can be responsible for a compo-
nent reference capture and must be removed from the component
system if we want to ensure the communication integrity property.
Provided services are all the available services defined in the com-
ponent type. The required services of a type are those methods

158

that are called in the source code of the type. We compute sub-
typing relationships from the language inheritance and subtyping
relationships. In Java, there are two such relationships: extends
and implements. Note that CBSE usually makes little use of
subtyping, nevertheless [5, 16] are counter-examples. Subtyping
provides a formal way to organize types [16] and is convenient
to use in CBSE. We also decided to deal with subtyping because
some implementations may use it to represent component types and
their communication interface. If we want component subtyping
we need to check the compatibility between provided and required
services of the component types. Provided services follow the same
rule as inheritance in OOP [31]: the sub-component must provide
at least all the services provided by its super-component. How-
ever, it is different with required services, which obey the so-called
contra-variance rule: the sub-component must require at most all
the services required by its super-component. The intuition behind
this is: if a component subtype has more required services than its
ancestors, then an execution could trigger a message which can-
not be recognized by the execution context. A similar analysis can
be done for parameters and return type of this service. Practically
speaking, along subtyping, the provided set can be enriched and
strengthened while the required set must be relaxed. Obviously,
these rules should be checked by our tool but we avoid a precise
discussion of this in this paper.

4.2 Static Checking of the CI Property
Few languages are able to enforce basic CBSE properties (e.g.

[4, 5, 27]). One important idea behind components is that we have
a static map of its construction, this is the so-called architecture.
This map exposits the structure and communications between com-
ponents, and in a good implementation, only those communications
can arise. It is difficult to statically check the CI property [27,
5]. The principle of the control in ArchJava relies on strict rules
prohibiting components from escaping from their enclosing com-
ponent. In addition the type system checks that the communica-
tions defined between (statically or dynamically created) instances
are compliant with the connection information (connect and con-
nect pattern constructions). There are three exceptions to the stated
static checking of ArchJava: i) there are dynamic controls of casts,
ii) the legacy mode relaxes some rules, for instance, inheriting from
external types, and iii) communications via shared data are not
checked. As in the ArchJava language, we avoid hidden commu-
nications via data sharing, see AliasJava [4] for a solution, and we
ignore the use of the Java reflexive API. We do not consider con-
nect pattern as in ArchJava since they would not occur in legacy
code. Our communication model relies only on direct calls and we
have no explicit connection information. Thus the best we can do
is to define rules disabling components escaping from their parent
component. We qualify the types of interest of the project as ei-
ther a component type or a data type using a set of rules defined
in Section 4.3. Basically, a component type (CType) must respect
the rules, if not it is qualified as a data type (DType). We call
ETypes the set of external types not defined in the project under
analysis. An instance of a CType is a component, while a value
is an instance of a DType. Following the work on ArchJava [5,
6, 4], our tool considers that a component can neither be passed
as a reference in a service, nor be a visible part of a type. We do
not check all the possible violation cases, we choose some rules we
think are the most important. Our goal is rather to identify the types
which are violating the most critical rules. Furthermore, in our con-
text (legacy code) we think it valuable to weaken some rules and to
have complementary information about the related infractions. We
slightly change some rules about subtyping and we restrict some

casts rather than adding dynamic control for casts. Constructors
are not checked and can enable component sharing and violations
of CI. Static fields and static nested classes are not yet addressed,
since we are still not sure how to build components with these fea-
tures. We also add new rules to restrict CTypes occurring in a
visible generic construction, and a CType cannot be an exception
class. These rules are complemented with a set of exceptions defin-
ing more local problems that we consider less important. They are
related to boundary infractions, casts in case of subtyping between
component and data types, and non visible members calling on ex-
pressions other than this or super. These infractions are not
detailed in this paper.

4.3 The CI Rules
With the information extracted from the source code, our ap-

proach checks for some rules in order to statically ensure that com-
ponents cannot escape from their enclosing parent.

Wrong Profiles.

1-a) This first rule looks for public profiles in the application. If a
type of interest is passed as parameter of a service or returned
by a service it is considered a DType. The method signature
is qualified as a wrong profile. This rule is applied to all types,
not only to CTypes. With this heuristic it would be easier to
change a data type into a component type during refactoring.

1-b) Exception to rule 1-a: a component may be passed to or re-
turned by a constructor. In legacy code the use of parame-
ters in constructors is a convenient way to initialize composite
structures. The heuristic used here is to report the information
about these violations to the user for later consideration. Our
experiments have shown that it also renders more iterative the
process of fixing violations, as suggested in [3].

1-c) Private and protected methods of CTypes can have compo-
nent types in their signatures as long as they are called on
this or super. This rule prevents inner components from
escaping their enclosing component.

Composition. Encapsulating a component reference into a value
opens the risk of a hidden channel. It is not difficult to see that the
value can be captured and a method of the data type can indirectly
send a message to the internal component. This problem can arise
with any attribute modifier, even if it is a private part.

2-a) A type occurring in the structure of a DType is a DType.

2-b) Types in public or default package fields of CTypes are
DTypes since they are publicly available.

2-c) CTypes can have CTypes as private or protected fields but
they are only accessed via this or super to prevent com-
ponents escaping from their parent.

Subtyping.

3-a) A subtype of a DType is considered a data type. This fol-
lows from rule 1-a, since instances of the subtype could be
used as parameters or return values using polymorphism re-
sulting from subtyping. However, DTypes are allowed to be
subtypes of CTypes, but an infraction is reported in case of
a cast expression compliant with this subtyping relation.

Arrays and Generics. Array and generic constructions add several
complications1. Arrays allow access to their inner data, this is also

1ArchJava considers array constructions but it says nothing about
the use of generics.

159

true with generics like Vector or ArrayList provided by the
Java library since version 1.5. Array or generics in DType fields
should be naturally considered as DTypes and this implies that
the types of their stored values are also DTypes. Instantiation of
arrays or generics used as formal parameters in services or in vis-
ible field declarations would allow indirectly accessing the stored
references. We use a strict rule and consider that it applies also to
generic classes defined by the user.

4-a) We consider the actual parameters of arrays and generics in
public or default field declarations as DTypes.

4-b) We consider the formal parameter type of arrays and generics
in services as DType.

4-c) The previous rule applies also to private and protected fields
of a DType (from 2-a).

4-d) In case of a generic instantiation used as a superclass or a
super interface, their formal parameters should be flagged as
DType (from 4-a).

4-e) Addition to 4-d: The subclasses and implementations of the
generic instantiation (from rule 3-a) have to be flagged as
DTypes.

Nested Classes. Nested classes are generally used in GUIs, or to
implement some specific features like simulating multiple inheri-
tance. There are four kinds of nested classes: one static nested
class and three types of inner classes – non-static member, local,
and anonymous class.

5-a) If the inner class2 is a DType, one of its instances could es-
cape from its context and could allow access to the enclosing
component reference. In this case the enclosing class should
be declared a DType.

Exception Classes. Exceptions are class instances enriched with
a throw/try-catch mechanism. They should be checked like
ordinary types, which can be default-package or publicly visible.
But an exception type occurring in a catch clause is a DType.

6-a) A strict and pragmatic rule is to always consider exception
types as data types.

External Types. External types of interest (ETypes), not defined
in the Java project, are ignored. In ArchJava [5], this corresponds
to the legacy mode introduced in the compiler. We chose to ig-
nore all types of interest not defined in the Java project (e.g., ig-
nore all external libraries as java.io.*, or org.eclipse.*).
One reason is that we want to extract the provided services of the
components, and their structure. This requires having access to the
source code (the Java reflective API could help, but we favor a more
generic solution). Also, there are good chances that Object will
be passed as a parameter of, or returned by, some method, turn-
ing it into a DType (rule 1-a). This will, in turn, qualify all types
of interest as data types (rule 3-a). Nevertheless, it is convenient
to extend some external data types. Lastly, we cannot hope to re-
structure the entire world and we would like to limit ourselves to
the application under analysis. Thus we consider that the external
world does not introduce communication integrity problems. This
is surely wrong and the designer has the responsibility to ensure
this. One restricted way is to check for suspicious downcast from
an external data type to a component type. To provide more pre-
cise checking in the case of extending external type is still an open
problem [3].

2For technical reasons, local and anonymous classes are not yet
identified by our prototype.

In summary the two kinds of types (CTypes and DTypes) can
neither define wrong services nor public and default fields of com-
ponent types, generics of component types, or arrays of compo-
nent types. Protected and private methods can have component
types, generics of component types, or arrays of component types
in their signatures. A CType: i) is not an exception class, ii) can-
not have an inner DType, iii) does not inherit from DTypes or
generic instantiation, iv) is not a formal parameter of a visible ar-
ray or generic, v) can have protected or private fields of component
types, generics of component types or arrays of component types.
ADType: i) can be an exception class, ii) can have inner types, iii)
can inherit from any other type, iv) can be a formal parameter of an
array or generic, v) cannot have private or protected fields of com-
ponent types, generics of component types or arrays of component
types.

4.4 The Extracting Process
JCE is based on the JDT API [17] which provides a model of

the Java source code and procedures to analyze it and to compute
information. The JDT API also provides several tools to rewrite
the source code, to build an abstract syntax tree of the code, and
to help in defining parsers. This approach is currently available
for Java only, see the web site [32] for more details and experi-
ments. The JCE tool analyzes the main Java elements: classes (ab-
stract or not), interfaces, inner classes, subtyping, arrays, generics,
attributes, and method signatures. The first task of the tool is to
extract an abstraction of the source code compliant with our com-
ponent model principles. Thus the tool mines the source code for
the types, their structure, provided and required services, commu-
nications and subtyping links. The tool exploits this information
to check for CI rules violations. The main rules are devoted to the
distinction between component types and data types. By default all
the types are initially CTypes. The rules which are responsible
to flag types as DTypes are run first (1-a, 2-b, 4-a, 4-b, 4-d, 4-e,
and 6-a). Then the propagation rules (2-a, 3-a, 4-c, and 5-a) are ap-
plied to propagate the DTypes along subtyping, composition, and
enclosing inner class.

5. TOOL EVALUATION
The evaluation of our tool is not obvious, as mentioned in the

related work there is no other tool devoted to the same purpose for
a precise comparison. We tested it on several examples to both val-
idate that our heuristics and set of rules are not too strict and enable
effective refactoring of some data types into component types. This
section gives a detailed example as well as a summary of other ex-
periments. As a first practical means of evaluation we experimented
with the manual refactoring of several small and middle-size appli-
cations.

5.1 Using JCE on MineSweeper
In this section we demonstrate how to use the information pro-

vided by the tool to help in refactoring a simple Java project. We
do not describe a precise refactoring process with a given archi-
tecture in mind. The goal is to improve the component structure
of the application and the tool will help in making this structure
explicit and to show CI violations. This example is based on the
MineSweeper game: “Minesweeper is a single-player computer
game. The object of the game is to clear an abstract minefield with-
out detonating a mine. The game has been written for many system
platforms in use today” (from Wikipedia). We use the implemen-
tation provided by Tim Van den Bulcke3. It has nearly 800 lines

3http://timvandenbulcke.objectis.net/minesweeper-in-java

160

Figure 2: Analysis of MineSweeper.

of code and 10 classes. The code was not yet compliant to good
Java practices with regards to, for instance, naming conventions,
documentation or data encapsulation. The restructured application
was tested by playing parties. An initial graphical view of the anal-
ysis is depicted in Figure 2. The tool provides also detailed textual
information. In this example, the dark gray boxes are data types
and the light gray boxes are component types. Arrays and generics
instantiated in the code are depicted as data types, for instance the
node at the right bottom represents Field [][]. Plain arrows
go from a composite component type to a component type part,
dashed arrows illustrate a communication, i.e. one or more method
call(s), from the caller to the callee. The width of the dashed ar-
row indicates the “strength” of the communication link (the num-
ber of services called on this communication). A context window
on a communication link shows what services are involved in this
communication. A context window on a node, lower right win-
dow, for node Grid in the figure, shows the services it provides
and requires. A wrong profile appears as a provided service, col-
ored red, and with a star before its name. We can see in Figure 2
that the method getMainWindow is responsible for marking the
MineSweeper class as a data type. There are three wrong pro-
files in this application:
Grid.getMainWindow() -> MineSweeper,
Field.getGrid() -> Grid, and
SingleScore.isBetterOrEqualScore(SingleScore)
-> boolean. There is also a public two dimensional array of
Field which is responsible for flagging Field as a data type.
The above profiles cause MineSweeper and Grid to be flagged
as DTypes, then CustomDialog and TimerDisplay are
DTypes because they are parts of MineSweeper. HighScores
is aDType for two reasons: it is part of MineSweeper and it has
an inner DType (SingleScore). There are also several public
fields which are responsible for flagging several types as DTypes.
The manual refactoring process starts with the Grid type, try-
ing first to solve the Field.getGrid() -> Grid wrong pro-
file. This method is used in Field by the mouseClicked and
showValue methods. A solution is to introduce a field
grid:Grid in Field, replacing calls to getGrid() by ac-

cesses to this.grid, and setting the value of this field in the
constructor. We also modify the Grid initialize method to pass
this to the created fields. A second step is to solve the wrong pro-
file: Grid.getMainWindow() -> MineSweeper. In the
Grid class, there is already a mainWindow:MineSweeper at-
tribute. This method was also used in the Field class. Defin-
ing a new lost method in class Grid relaying the lost call to
the mainWindow attribute removes the need of this wrong pro-
file. After manually removing these two wrong profiles, using
the tool it is easy to see that the set of CTypes does not change.
We can observe that Field is a data type since it appears in the
public attribute Field [][] grid in the Grid class. Then
this implies by composition that Grid is a data type and then
so is MineSweeper. Four public fields in MineSweeper are
also responsible for flagging CustomDialog, Grid, Menu and
TimerDisplay as DTypes. Our third step is to fix these public
accesses, one in Grid and the four others in the MineSweeper
class. Three of them can become private fields of their class with-
out any further modifications. The HighScores highScores
field in class MineSweeper becomes private, we add a corre-
sponding parameter in the Menu constructor, and we modify its call
in class MineSweeper. The Grid grid field requires a similar
modification. We add a new corresponding parameter in the Menu
constructor with the correct initialization in class MineSweeper.
We also modify the CustomDialog constructor to accept a new
grid parameter and we modify its call in the Menu class. These
are quite simple refactorings. As a fourth and final step we ex-
tract the inner class from the HighScores file. In this case only
SingleScore is a data type, however it is more difficult to solve
this case which is due to the third wrong profile.

There is still some work to make explicit a good architecture:
constructors CI violations remain to be solved, communications
should be consistent with the component structure, provided or re-
quired profiles should respect subtyping rules, etc The JCE tool
enables incremental refactoring. The refactoring result can be sub-
jected to more advanced refactorings, for instance targeting the
ArchJava language. In a realistic refactoring process designers and
architects may need to iterate several times [30]: between analysis

161

Figure 3: Types and CTypes for some Applications.

of the current code, compliance with the expected architecture, and
refactoring. In order to redesign an application with a precise ar-
chitecture in mind which is not the one they observe in the code,
they would need to use different tools conjointly: architecture com-
pliance checker, refactoring tool, metrics based tools, etc. The JCE
tool is a new tool to help the designer in checking the compliance
of the new architecture implementation with the communication
integrity property.

5.2 Experiments
We ran the tools on several examples of various sizes, com-

ing from different repositories and illustrating different applica-
tion domains. The examples can be found mainly on sourceforge
(http://sourceforge.net/) (jabref, metrics, SweetHome3D, jasperre-
ports, StringSearch, Checkstyle, Squirel, Commander4J). But we
also collected some specific applications (MineSweeper, Javacalc,
prefuse, AirportInternetAccess, TSAFE, and CoCoME examples),
and we designed several of them (STSLib, JavaCompExt, NIM
game, and simplification). We ran the tools on more than 30 ex-
amples ranging from simple examples of 100 LOC to real size
applications of 160 KLOC, for a total of more than 500 KLOC.
Figure 3 gives the number of types (Java classes and interfaces)
and CTypes as a function of the code size (LOC). The percent-
age of component types relative to the total number of types (%R)
gives a partial evaluation of the CBSE quality relevant to our con-
text. As a first remark, types respecting our set of CI rules exist
in all these applications even if they are traditional OOP applica-
tions. We found a ratio of less than 10% in BECL and ECS projects
from http://jakarta.apache.org. For some of them which were de-
signed with components or strict programming rules in mind, the
results are better (for instance, the TSAFE application, has a ra-
tio of 67%, and PyrusNGS has 76%). However, for some others
which claim to be CBSE applications, the results are poor (for
instance, COCOME-RCOS, with a ratio of 31%). Commander4J
and StringSearch are even more intriguing since their scores are
very high (greater than 70%). Their authors reply negatively to the
question: “Do you use any component principles or programming
rules?” There are various reasons explaining these results: indus-
trial component approaches have no hierarchical component, often
composite implementations use packages and communications are
implemented in many different ways. Java component models and
implementations are numerous and the JCE prototype is dedicated
to our specific component model. Thus it seems difficult to pro-
pose a rigorous classification of the component practices based on
the above results. However, it raises several issues such as a more

Table 1: Results for JCE.
PC CC DT #W %R
Nim Game

OOP Version 2 0 2 4 50
CBSE Version 2 2 0 0 100

Simplification
OOP Version 2 0 5 18 29
CBSE Version 4 1 2 0 72

MineSweeper
OOP Version 3 0 7 3 34
CBSE Version 5 4 1 1 90

Javacalc
OOP Version 1 0 11 5 8
CBSE Version 0 5 7 3 42

REGEXP
OOP Version 6 1 9 8 44
CBSE Version 10 3 3 3 81

JavaCompExt
OOP Version 34 5 35 86 53
CBSE Version 37 7 31 80 58

Metrics Plugin
OOP Version 93 3 133 267 42
CBSE Version 112 8 109 257 52

in-depth analysis of these results and the defining of a tool which
can be configured with a set of CI rules.

We analyzed seven applications more precisely, and we will high-
light the most important points below. In this case we use the in-
formation provided by JCE and refactor the application in a similar
way as we did for MineSweeper in Section 5.1. That means, man-
ual refactoring with the help of the tool to identify problems and
without any specific architecture in mind. Let us consider Table 1,
which represents several analyses performed with JCE on two ver-
sions of seven applications. In this table PC stands for primitive
component, CC for composite component and DT for data types.
In the middle columns, when we go from the OOP version to the
CBSE version, several data types become new component types.
The two last examples show more consequent remodularizations of
non-trivial projects. The #W column gives the number of wrong
profiles which is the most important indicator in these examples.
We solve some of the rule violations, after which this indicator de-
creases. The ratio %R column clearly shows the evolution of the
component refactoring process. We also note that removing wrong
profiles was more difficult with applications like simplification and
Javacalc. These applications parse data expressions and have a
strong data nature. One might think that extracting tools could help
in validating our JCE tool, however, they have very different objec-
tives. We conducted a detailed comparison with SoMoX, see [32],
and we report its numeric data in Table 2. We chose the SoMoX
tool since it was the only well-supported component extractor tool
which is freely available. One first difference is that JCE computes
abstract component types, but this concept does not exist with So-
MoX. With JCE the total number of data, composite, and primitive
types is equal to the number of types in the application. This is not
true with SoMoX since it suggests new clustering types and even
discards some types. Consequently the measure %R, used above, is
not valid for SoMoX. We can observe that the total component type
numbers for SoMoX are nearly the same in every version of each
application, except the data type numbers, which decrease. While
for Metrics there is an increment of 14 component types using JCE

162

Table 2: Results for SoMoX.
PC CC DT

Nim Game
OOP Version 4 2 1
CBSE Version 4 2 0

Simplification
OOP Version 7 1 4
CBSE Version 7 1 0

MineSweeper
OOP Version 7 1 1
CBSE Version 7 1 0

Javacalc
OOP Version 8 2 0
CBSE Version 8 1 0

REGEXP
OOP Version 12 4 6
CBSE Version 11 5 5

JavaCompExt
OOP Version 51 8 47
CBSE Version 51 8 40

Metrics Plugin
OOP Version 124 19 109
CBSE Version 124 18 102

Figure 4: Time for JCE.

(from 96=93+3 to 120=112+8), SoMoX observes few changes in
the number of component types (it decreases from 143=124+19 to
142=124+18). This confirms that both tools measure different com-
ponent information. JCE is devoted to identifying existing compo-
nent types, really implemented by the construction of the language
and it uses a pure semantic approach to qualify component and data
types. SoMoX, on the other hand, uses a more syntactic approach
based on measures and heuristics to analyze an application and to
suggest clusters which could be component types in the next re-
structuring step.

5.3 Time Performance Issues
The JCE approach needs to parse the source code, its computa-

tion time is linear with respect to the code size. The tool propagates
data type information which is linear with respect to the number of
types. We observe that the number of types for projects with more
than 50 KLOC is bound to less than 1% of the number of LOCs

(“Type” curve in Figure 4). Given that dynamic environment time
measures are not stable in Eclipse, we computed the average of
several measures. Figure 4 shows that the JCE time is quite linear
(dot square “JCE Time” curve). But the JCE current implemen-
tation parses several times the source code and overuses String
computations. Another point to note is that JDT has some resource
management problems and applications under Eclipse are slower
than standalone Java applications.

6. CONCLUSION
In this article we examined the problem of architecture erosion,

which occurs when a software implementation deviates from its
architecture. One way to mitigate the erosion of a system’s archi-
tecture is to explicitly embed it in the source code. Re-engineering
legacy code with software components seems a promising method
to implement architectural concerns in the source code. For that
designers need a tool to assess the quality of the component refac-
toring and to guide the re-engineering process. We might think
that metrics based software are the right tools. However, the cur-
rent state of the art is not sufficient and they are relevant only to
measure abstract and global properties like reusability or maintain-
ability. Component and architecture recovery is another possible
way. However, these also falls short since their objective is not to
qualify the existing components but rather to suggest new compo-
nents by clustering parts of the existing applications. A last option
is to use code analyzers or architecture checkers, but amongst the
plethora of such tools none of them is really suitable to component
programming with hierarchical components, subtyping and ensur-
ing the communication integrity property. To fill this gap, we have
provided a tool based on a general and abstract component model
with first-class components, subtyping and composition. This com-
ponent model has a straight implementation in Java. Based on this
model we elaborate a set of rules to infer violations of the com-
munication integrity property. These rules allow of separating data
types from component types and warning the user about related
problems. While experimenting on several open-source applica-
tions, we observed that types respecting our CI rules already exist
in many applications. We started the process of evaluating the tool
by refactoring several middle-size case studies. Our experiments
showed that CI violations are sometimes easy to remove but often
it is a tricky process. Our JCE prototype is specific to Java but the
principles of our approach are reusable for other OOP languages
and CBSE models.

In the future we plan to experiment with different set of rules, for
example relaxing the rule for methods signature but strengthening
the rule for constructor. Another track is to continue the tool eval-
uation and to compare the results of these different rule sets. We
already did some manual experiments in re-engineering a few Java
applications but we aim to process larger, industry-sized projects.

Thanks to: Syed Asad Ali Naqvi, Joost Noppen, Arang Rhie and
Klaus Krogmann for their help.

7. REFERENCES
[1] FindBugs, 2009. http://findbugs.sourceforge.net/.

[2] PMD, 2009. http://pmd.sourceforge.net/.

[3] M. Abi-Antoun, J. Aldrich, and W. Coelho. A case study in
re-engineering to enforce architectural control flow and data
sharing. Journal of Systems and Software, 80(2):240–264,
2007.

[4] J. Aldrich and C. Chambers. Ownership domains: Separating
aliasing policy from mechanism. In M. Odersky, editor,

163

ECOOP ’04 — Object-Oriented Programming European
Conference, volume 3086 of Lecture Notes in Computer
Science, pages 1–25, Oslo, Norway, 2004. Springer-Verlag.

[5] J. Aldrich, C. Chambers, and D. Notkin. Architectural
reasoning in ArchJava. In Proceedings ECOOP 2002,
volume 2374 of LNCS, pages 334–367. Springer Verlag,
2002.

[6] J. Aldrich, C. Chambers, and D. Notkin. ArchJava:
connecting software architecture to implementation. In
Proceedings of the 24th International Conference on
Software Engineering (ICSE-02), pages 187–197. ACM
Press, 2002.

[7] P. André, N. Anquetil, G. Ardourel, J.-C. Royer,
P. Hnetynka, T. Poch, D. Petrascu, and V. Petrascu.
Javacompext: Extracting architectural elements from java
source code. In Proceedings of the 16th Working Conference
on Reverse Engineering (WCRE 2009), tool demonstration,
pages 377–378, Lille, France, October 2009.

[8] S. Becker, M. Hauck, M. Trifu, K. Krogmann, and J. K. n.
Reverse engineering component models for quality
predictions. In Proceedings of the 14th European Conference
on Software Maintenance and Reengineering, European
Projects Track, 2010.

[9] J. Bosch, C. A. Szyperski, and W. Weck.
Component-oriented programming. In ECOOP Workshops,
pages 34–49, 2003.

[10] I. T. Bowman, M. W. Godfrey, and R. C. Holt. Extracting
source models from java programs: Parse, disassemble, or
profile? Unpublished paper available at
http://plg.uwaterloo.ca/ migod/papers/1999/paste99.pdf

[11] S. Chardigny, A. Seriai, M. Oussalah, and D. Tamzalit.
Extraction of component-based architecture from
object-oriented systems. In WICSA, pages 285–288. IEEE
Computer Society, 2008.

[12] S. Chardigny, A. Seriai, D. Tamzalit, and M. Oussalah.
Quality-driven extraction of a component-based architecture
from an object-oriented system. In CSMR, pages 269–273.
IEEE, 2008.

[13] L. Chouambe, B. Klatt, and K. Krogmann. Reverse
engineering software-models of component-based systems.
In CSMR, pages 93–102. IEEE, 2008.

[14] I. Crnkovic. Component-based software engineering - new
challenges in software development. Software Focus,
2(4):127–133, 2001.

[15] I. Crnkovic, S. Sentilles, A. Vulgarakis, and M. Chaudron. A
classification framework for software component models.
IEEE Transaction on Software Engineering, Submitted for
publishing:1–25, October 2010.

[16] M. C. da Silva Jr., P. A. de Castro Guerra, and C. M. F.
Rubira. A java component model for evolving software
systems. In ASE, pages 327–330. IEEE Computer Society,
2003.

[17] The Eclipse Foundation. Java Development Tooling, 2010.
http://www.eclipse.org/jdt/.

[18] J.-M. Favre, J. Estublier, F. Duclos, R. Sanlaville, and J.-J.
Auffret. Reverse engineering a large component-based
software product. In CSMR ’01: Proceedings of the Fifth
European Conference on Software Maintenance and
Reengineering, page 95, Washington, DC, USA, 2001. IEEE
CS.

[19] J. Gargiulo and S. Mancoridis. Gadget: A Tool for Extracting
the Dynamic Structure of Java Programs. In SEKE: Software

Engineering and Knowledge Engineering, pages 244–251,
2001.

[20] D. Garlan. Software architecture: a roadmap. In ICSE ’00:
Proceedings of the Conference on The Future of Software
Engineering, pages 91–101, New York, NY, USA, 2000.
ACM.

[21] M. Goulão and F. B. Abreu. Software Quality Measurement:
Concepts and Approaches, chapter An overview of
metrics-based approaches to support software components
reusability assessment". Information Technology. ICFAI
Books (India), 2007.

[22] L. Hochstein and M. Lindvall. Combating architectural
degeneration: a survey. Information & Software Technology,
47(10):643–656, 2005.

[23] R. K. Keller, R. Schauer, S. Robitaille, and P. Pagé.
Pattern-based reverse-engineering of design components. In
ICSE ’99: Proceedings of the 21st international conference
on Software engineering, pages 226–235, Los Alamitos, CA,
USA, 1999. IEEE CS Press.

[24] J. Knopel and M. Lindvall. Software architecture
visualization and evaluation. SAVE web site:
http://www.fc-md.umd.edu/save/about.aspx, 2009.

[25] R. Koschke. Atomic Architectural Component Recovery for
Program Understanding and Evolution. Ph.d. thesis, Institute
for Computer Science, University of Stuttgart, Stuttgart,
2000.

[26] R. Koschke, G. Canfora, and J. Czeranski. Revisiting the
ΔIC approach to component recovery. Sci. Comput.
Program., 60(2):171–188, 2006.

[27] D. C. Luckham, J. L. Kenney, L. M. Augustin, J. Vera,
D. Bryan, and W. Mann. Specification and Analysis of
System Architecture Using Rapide. IEEE Transactions on
Software Engineering, 21(4):336–355, 1995.

[28] S. Mahmood, R. Lai, Y.-S. Kim, J. H. Kim, S. C. Park, and
H. S. Oh. A survey of component based system quality
assurance and assessment. Information & Software
Technology, 47(10):693–707, 2005.

[29] N. Medvidovic and R. N. Taylor. A classification and
comparison framework for software architecture description
languages. IEEE Transactions on Software Engineering,
26(1):70–93, 2000.

[30] T. Mens and T. Tourwe. A survey of software refactoring.
IEEE Transactions on Software Engineering, 30(2):126–139,
Feb. 2004.

[31] J.-C. Royer. Type Checking Object-Oriented Programs: Core
of the Problem and Some Solutions. Journal of
Object-Oriented Programming, 11(6):58–66, 1998. ISSN
0896-8438.

[32] J.-C. Royer. The JCE Checker.
http://www.emn.fr/z-info/jroyer/JCE/index.html, 2010.

[33] B. R. Schmerl, J. Aldrich, D. Garlan, R. Kazman, and
H. Yan. Discovering architectures from running systems.
IEEE Transactions on Software Engineering, 32(7):454–466,
2006.

[34] H. Washizaki and Y. Fukazawa. A technique for automatic
component extraction from object-oriented programs by
refactoring. Science of Computer programming,
56(1-2):99–116, 2005.

164

