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Abstract—End-users increasingly demand the provisioning of
secure, scalable, reliable, flexible, resilient, and cost-efficient in-
frastructures, platforms, and software. However, the preservation
of these properties, particularly in SOA and cloud environments,
is extremely affected by distributed, heterogeneous, transient, and
volatile context information. We envision the implementation of
governance feedback loops, an innovative approach that equips
service-oriented systems with run-time governance capabilities
able to control the fulfillment of service level agreements (SLA)
under changing execution environments. However, the effective-
ness of our approach depends on the capability of governance
infrastructures to guarantee the consistency between monitoring
strategies, governance objectives, and context situations. To ad-
vance our vision, this paper proposes (i) contextual RDF graphs,
a machine-readable specification of monitoring requirements
that enable governance feedback loops with dynamic context
monitoring capabilities; and (ii) context-driven SLAs, an extension
of SLAs where context requirements are explicitly mapped to
service level objectives (SLO) to optimize the run-time control of
contracted obligations.

I. INTRODUCTION

Cloud computing is a large-scale distributed computing
paradigm that enables wide area networks to support inter-
actions between information technologies service providers
and consumers. It focuses on providing software functionality
and virtualized computing resources in the form of services
delivered on demand. These cloud services can be classified
into three main groups: software-as-a-service (SaaS), platform-
as-a-service (PaaS), and infrastructure-as-a-service (IaaS) [17],
[28], [19]. In any case, these services must be provisioned
under contracted quality of service requirements generally
expressed in the form of service level agreements (SLAs) [4].

Cloud computing and service-oriented architecture (SOA)
can be considered as complementary technologies. On the one
hand, SOA is a way of designing, implementing, and maintain-
ing software systems composed of coarse-grained services that
represent reusable functionality [13]. On the other hand, cloud-
based services can be realized by composing multiple SOA-
based services added on top of cloud resources. Furthermore,
a cloud environment could be built on top of an SOA infras-
tructure by implementing a virtualization and self-provisioning
level of indirection [19]. Although the two concepts have
overlapping concerns and considerations, they target different

problems. SOA’s emphasis is on making software component
integration in systems of systems more efficient, whereas
cloud computing focuses on leveraging network resources to
offer software and hardware infrastructure as commodities.
Hence, SOA can complement cloud computing to address
integration concerns, but cloud computing does not substitute
SOA as an integration technology [17]. Most importantly,
both cloud computing and SOA share the goal of delivering
services in a cost-effective way, while guaranteeing desired
quality attributes and satisfying business objectives. Thus, to
achieve their respective visions, SOA and cloud computing
solutions must ensure the design, implementation, running,
maintenance, and evolution of service-oriented systems.

SOA governance defines the policies and mechanisms for
implementing, executing, and evolving service-oriented soft-
ware. It includes a variety of concerns such as the management
of data repositories, replacement of services, control of the
SOA governance infrastructure, resource allocation, and man-
agement of SLAs [11]. In a recent investigation conducted
by researchers from Software Engineering Institute (SEI),
Harrison and Lewis identified security, control, performance,
and reliability as some of the main barriers to cloud computing
adoption [19]. It is undeniable that the preservation of quality
attributes and management of SLAs are crucial concerns in
SOA governance, particularly for service-oriented systems in
cloud environments. Therefore, the success of these technolo-
gies is highly dependent on their capacity to govern service-
oriented systems, and to apply enforcement mechanisms ac-
cording to policies, procedures, and responsibilities [22].

Service-oriented systems in SOA and cloud environments
are highly affected by and dependent on distributed, heteroge-
neous, transient, and volatile context information. In particular,
the desired QoS and system properties may be constantly
violated due to changing situations of context entities that
can affect the computing infrastructure and system behavior.
Furthermore, monitoring mechanisms supporting governance
objectives may be no longer relevant as the environment
and system states are changing over time. To address these
complex dynamics involved in effectively supporting SOA
governance, we proposed the implementation of context-aware
governance feedback loops [14], [22], a promising approach



that equips service-oriented systems with run-time governance
capabilities based on control loops [15], and adaptive context
monitoring [22], [24], to control the fulfillment of SLAs
under changing execution environments. To ensure that ser-
vices are executed according to policies and responsibilities,
context-aware governance feedback loops include monitoring
capabilities to keep track of environmental changes than can
affect system execution. This monitoring instrumentation is
implemented as a self-adaptive component to support the
deployment of new context sensors and context reasoning
components at run-time.

To advance the realization of context-aware governance
feedback loops, this paper focuses on two main contributions.
The first one, contextual RDF graphs, is a machine-readable
specification of monitoring requirements that enables gover-
nance feedback loops with dynamic context monitoring capa-
bilities to address changes in monitoring requirements at run-
time. Variations in monitoring requirements can be motivated
by changes in either the governed service-oriented system
(e.g., dynamic reconfiguration of its software architecture),
governance objectives (e.g., the addition of a new SLO in
an existing SLA), or the situation of relevant context entities.
Our context specification approach is built on top of the graph-
based formalism defined in the resource description framework
(RDF) [20], and two of our previous contributions in context
management: (i) our extensible context taxonomy proposed
to characterize context information in different application
domains [22], and (ii) our context management meta-model
intended to support the dynamic deployment of infrastructural
elements required to manage the context information lifecycle
[22]. The second contribution, context-driven SLAs, is an
extension of the SLA definition where context requirements
are explicitly mapped onto SLOs and their corresponding
metrics, to optimize the control of contracted obligations at
run-time.

With our approach, we aim to implement context-aware
governance feedback loops, to realize run-time SOA gover-
nance infrastructures where the monitoring mechanisms not
only keep track of the relevant context, but adapt themselves
to preserve their relevance with SLAs even when governance
objectives are continuously changing.

The remainder of this paper is organized as follows. Sec-
tion II presents an overview of our vision of governance
feedback loops intended to optimize run-time governance.
Section III analyzes the mapping between quality attributes
and selected drivers for cloud computing adoption as an initial
step for the identification of context monitoring requirements.
Section IV highlights our research challenges in realizing
dynamic monitoring. Section V presents our related work that
constitutes enabling elements for realizing dynamic monitor-
ing as envisioned in this paper. Sections VI and VII explain in
detail our proposal for the specification of dynamic monitoring
strategies and context-driven SLAs. With an example we il-
lustrate the applicability of our approach. Finally, Section VIII
discusses related work and concludes the paper.

II. REVISITING GOVERNANCE FEEDBACK LOOPS

To optimize business functions, service-oriented systems are
instrumented with governance capabilities intended to ensure
contracted conditions such as performance, reliability and re-
source consumption. SOA governance processes monitor these
properties to identify trends, improve policies and business
processes, and manage SLAs consequently [11]. For this,
SOA governance implements a general feedback loop where
service-oriented systems are continuously monitored to control
the effects and outputs of policies and business processes.
Then, based on the information monitored from policies and
processes, selected governance variables are fed back to decide
whether it is necessary to adapt policies, processes and SOA
systems [14]. Figure 1 introduces the general SOA governance
feedback loop.
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Fig. 1. General SOA governance feedback loop [14]

By implementing this general feedback loop, SOA gover-
nance processes are able to control, and monitor components
of service-oriented infrastructures to optimize businesses and
support system evolution. Thus, SOA governance requires
instrumentation to keep track of service-oriented systems
and environmental changes that affect governance objectives
at run-time. Most importantly, as the environment, business
objectives, and system situation are continuously changing,
monitoring mechanisms must be self-adaptive to keep track
of the right context entities even when monitoring require-
ments change as a consequence of changes in the execution
environment [22].

SOA 

governance 

controller

SOA 

governance 

objectives

Context

Monitor

Controller

Adjust Policies – Re-negotiate

MeasuresSymptoms
Context

Monitor

A
d
ap

t

S
y
m

pt
o
m

s

External Context

Service-Oriented System

Request adaptation

Internal Context

Fig. 2. General view of our proposed context-aware governance feedback
loops [22]



Figure 2 presents an abstracted view of our proposed
context-aware governance feedback loops [22]. The core of
our approach is composed of explicit control loops inspired by
control theory [9], [15] built into run-time governance infras-
tructures, as well as the management of context information
as a first level entity from design to implementation with
the goal of preserving monitoring relevance under changing
requirements [23]. SOA governance infrastructures based on
context-aware governance feedback loops not only are able
to control the system situation in light of governance goals,
but also the optimization and evolution of business goals and
SLAs according to changes in relevant environmental entities.
For this, context monitors gather relevant context from the
environment and the service-oriented system to measure the
system behavior in light of monitoring requirements inferred
from SOA governance objectives (SLAs and SLOs). Then,
SOA governance controllers use the symptoms identified by
the context monitor to request the adaptation of the service-
oriented system, and adjust or re-negotiate policies if neces-
sary. Similarly, a context monitor controller manages the adap-
tation of the monitoring infrastructure according to changes in
SOA governance objectives, and the situation of the governed
service-oriented system and relevant external context.

III. QUALITY OF SERVICE IN CLOUD ENVIRONMENTS

Quality of service (QoS) governance and the management of
service-level agreements (SLAs) are crucial concerns not only
to realize the vision of service-oriented systems in pure SOA
environments [16], [12], but also to realize cloud computing
promises [28], [17]. Ensuring contracted conditions in the
usage of services to deliver software and hardware resources is
clearly a mandatory requirement. In fact, most drivers for and
barriers to cloud computing adoption can be directly mapped
into quality attributes and corresponding quality factors [19].
Toward the specification of context monitoring requirements
for supporting the governance of service-oriented systems in
SOA and cloud environments, we propose a mapping between
QoS attributes and context information types in the form of a
context taxonomy to support the context monitoring require-
ments elicitation from quality attributes, and the design and
implementation of context management strategies accordingly.
For this, we analyzed the set of cloud computing drivers
proposed by SEI [19] in light of well known quality attributes
applicable to service-oriented computing such as performance
and dependability [1], [2].

A. Mapping drivers to quality attributes

Our first step toward the mapping presented in Table I
was the analysis of the drivers for cloud computing adoption
characterized by Harrison and Lewis [19]. We concentrated
on a selected set of drivers, those that can be traced at
run-time. Drivers such as collaboration, the usage of cloud
infrastructures to support human collaborative work, were not
considered relevant for dynamic monitoring in supporting SOA
governance.

Table I presents the selected drivers for cloud computing
adoption (left column) mapped to quality attributes (middle
column) and corresponding quality factors or quality concerns
that must be used to define the corresponding metrics required
to evaluate quality of service (right column).

TABLE I
MAPPING CLOUD COMPUTING DRIVERS TO QUALITY ATTRIBUTES

Cloud Computing Drivers [19] Quality Attributes Quality Factors

Availability

Performance Latency

Dependability
Availability
Reliability
Maintainability

Scalability Performance
Throughput
Capacity

Elasticity

Performance
Throughput
Capacity

Dependability
Safety
Integrity
Reliability

Virtualization Performance

Latency
Throughput
Capacity
Efficiency

Cost Performance

Latency
Throughput
Capacity
Efficiency

Our analysis focuses on performance and dependability
quality attributes and their corresponding quality factors. For
analyzing performance we started by generalizing the defi-
nition adopted by Barbacci et al. [2]. In SOA governance,
performance can be defined as responsiveness in terms of
either the time required for a service to complete specific
tasks or the number of tasks processed in a given frame of
time. Performance quality factors relevant for dynamic context
monitoring in SOA and cloud environments are (i) latency—
the time a service or a composition of services takes to respond
to a specific event; (ii) throughput—the number of tasks that
can be completed in a given time interval; (iii) capacity—
a measure of the amount of work a service can perform,
and (iv) efficiency—a measure of the relationship between
resource utilization and time behavior in the accomplishment
of a specific task [10]. We map performance to drivers for
cloud computing adoption as follows:

• Performance-Availability: latency can compromise readi-
ness for usage of software and hardware resources. The
time a service or composition of services takes to perform
particular tasks must be monitored to guarantee the
availability of computational resources delivered to users.

• Performance-Scalability: the scalability of computational
resources on demand is highly dependent on throughput,
and capacity. One the one hand, important objectives of
scalability strategies are improving throughput and sys-
tem capacity. On the other hand, scalability is conditioned
by the maximum overall system capacity.

• Performance-Elasticity: the elastic capabilities of cloud
environments depend on two main factors. The first one
is scalability from the perspective of resource constraints,



hence throughput an capacity are performance quality
factors relevant to elasticity. The second important aspect,
is the adaptive capability of cloud infrastructures to auto-
matically scale at run-time, which raises the necessity of
supporting run-time governance and dynamic monitoring
capabilities.

• Performance-Virtualization: to maximize resource usage
and leverage the advantages of virtualization, efficiency
is the most important aspect to consider. Efficiency can
be measured in terms of latency, throughput and capacity.

• Performance-Cost: as in virtualization, efficiency in terms
of performance quality factors is crucial to guarantee
contracted costs with users and maximize business goals.

In order to analyze dependability quality factors, we re-
visited the dependability definition we used in our reference
model for evaluating quality-driven self-adaptive systems [27]:
the level of reliance that can justifiably be placed on the
services that the software system delivers. Relevant quality
factors of dependability for service-oriented systems in SOA
and cloud environments are [1]: (i) availability—readiness for
usage of a particular service; (ii) reliability—continuity of
correct service delivery; (iii) maintainability—self-healing and
self-evolution capabilities; (iv) safety—absence of catastrophic
consequences on the external environment; and (v) integrity—
non-presence of undesirable system alterations. The mapping
between dependability factors and drivers for cloud computing
adoption is defined as follows:

• Dependability-Availability: availability is not only a
driver for cloud computing adoption but also a depend-
ability quality factor. Thus, the availability of compu-
tational resources demanded by users will depend on
the availability (as quality factor) of services delivering
cloud-based resources. Furthermore, dynamic services
equipped with self-maintenance capabilities are crucial
for guaranteeing the availability of reliable services in
cloud environments.

• Dependability-Elasticity: the satisfaction of changing user
requirements at run-time must be performed while en-
suring dependability. Moreover, elasticity is generally
enabled by any form of self-adaptation. The adaptive
capabilities of cloud infrastructures must be governed at
run-time to avoid severe consequences on the external
environment or undesirable systems states as a result
of self-adaptation. Moreover, the continuity of correct
service delivery must be guaranteed before, during and
after adapting the cloud infrastructure.

B. Metrics as starting points for monitoring strategies

Quality metrics are important cornerstones for the defini-
tion of SOA governance and monitoring strategies. Without
explicit and observable metrics we cannot construct effective
monitoring mechanisms to ensure the desired properties in
a particular software system [27]. Moreover, these metrics
must be not only observable at run-time but also directly
mapped to monitoring objectives, for instance to the desired
quality attributes of a service-oriented system. The explicit

identification of relevant context entities from metrics is the
first step toward the implementation of a dynamic monitoring
strategy.

As an example, consider the time behavior metric (TB)
proposed by Lee et al. as an efficiency measure for a particular
task in a service [10]. They define time behavior as the ratio
of task execution time over the total invocation time:

TB =
task execution time

total service invocation time

The denominator is the time period from the moment
a service request is sent to the moment the corresponding
response is received. The numerator corresponds to the task
execution time of a particular task in a service (a service can
be composed of one or more interfaces, each interface may
correspond to a task). The range is 0..1, where higher values
indicate better time efficiency.

This metric provides the means to characterize the situation
of a relevant context entity—a particular service component.
Service components, as any computational resource, are clas-
sified as artificial context entities. In this example the situation
of this service is characterized in terms of activity and time
context information. Activity context corresponds to partic-
ular tasks implemented by service interfaces. Time context
characterizes both the execution time of the particular tasks
and the total service invocation time. Both time observations
correspond to the amount of definite time context in a time
frame. These context categories are defined in the general
taxonomy for context identification we proposed previously
[23]. This paper discusses the extension of this taxonomy to
support the identification of relevant context information and
the definition of monitoring strategies for implementing run-
time SOA governance using governance feedback loops.

IV. CHALLENGES IN DYNAMIC CONTEXT MANAGEMENT
FOR SOA GOVERNANCE

Our investigation focuses on two main research challenges.
The first challenge concerns the identification and repre-
sentation of the context information that is relevant to the
governance objectives of a particular service-oriented system.
These models must be flexible enough to support context
representation and reasoning about governance monitoring
requirements in different problem domains without demanding
manual changes in the monitoring instrumentation from one
domain to another. For instance, a cloud computing provider
would expect that the governance infrastructure (governance
feedback loops and monitoring instrumentation) is able to
accomplish its control objectives even when contracted QoS
conditions change from one customer to another. The sec-
ond challenge corresponds to the run-time management of
the context information life cycle (i.e., context acquisition,
processing, reasoning, provisioning, and disposal) [23]. To
address these challenges, we investigated (i) the application
of context-aware computing and semantic web technologies
for representing and reasoning about context information as a
first level entity in the design and implementation of SOA



governance infrastructures [22]; and (ii) the application of
feedback loops [8], [15]. We also considered as a basis for
software automation instrumenting run-time governance with
self-adaptive capabilities to address uncertain and changing
requirements of context management to preserve QoS prop-
erties. Sections V-VII provide further details on our research
on context identification and specification, and the definition
of dynamic monitoring strategies. Aspects related to the im-
plementation of self-adaptive monitoring infrastructures are
beyond the scope of this paper, but can be found in our
previous papers on this subject [22], [26], [7], [24].

V. CONTEXT TAXONOMY AND META-MODEL

A. The Context Taxonomy

In order to control and govern context information in dy-
namic environments, we proposed a characterization of context
information as a foundation for context identification and rep-
resentation [23]. Our taxonomy, organizes context information
along five main categories (cf. squared nodes in Fig. 3).
These categories can be extended to support more concrete
classifications according to particular problem domains.

Figure 3 presents a partial view of SmartContext, our gen-
eral context taxonomy extended with basic context information
categories required for the implementation of dynamic context
monitoring to support run-time governance in SOA and cloud
environments.

Individual context includes anything that can be observed
about an isolated subject (i.e., the state of the subject). These
observations can be classified into four subcategories [23].
In particular, artificial context, describes the state of entities
resulting from human actions or technical processes (e.g.,
a service component or a hardware resource in a cloud
environment). Location context, physical or virtual, involves
all the information about the place of settlement or activity
of an object. Instances of a physical location are absolute
coordinates of a user location, the position of an object with
respect to another. An example of virtual location is the notion
of Uniform Resource Identifier (URI) useful for instance to
identify computational resources such as web services. Time
context concerns timeliness of subjects. Time context can be
either definite or indefinite. The former represents time frames
with specific start and stop points (i.e., a definite duration).
In contrast, the latter expresses a recurrent event which is
happening while another situation is taking place. In other
words, it is impossible to know its duration in advance. Activity
context answers questions regarding future, current, and past
goals as well as actions and tasks performed by an object. An
example of activity context relevant to SOA governance is the
execution of a specific method in an interface implementation.

Our taxonomy can be extended to define even more par-
ticular categories according to specific problem domains. For
instance, the operational faults category (cf. the gray oval in
Fig. 3) can be further extended according to domain specific
taxonomies such as the one for dependability and security
proposed by Avižienes et al. [1]. Our proposed context tax-
onomy defines the foundational vocabulary for the definition

of machine-readable representations of context information in
order to support the management of the context information
lifecycle. We have tested the suitability of SmartContext
by implementing an RDF-based [20] context representation
and its corresponding reasoning rules using semantic web
technologies [5], to support context-aware user-centric web
interactions in smart commerce applications domains [25],
[24].

B. The Context Management Meta-Model

For realizing dynamic monitoring needed for run-time gov-
ernance, the representation of context information that can
affect the behavior of services must include not only context
entities and monitoring metrics, but also the relationships
among the involved entities, as well as infrastructural context
management aspects, such as context sources, provisioning
mechanisms, and monitoring conditions. In light of this, we
proposed a context management meta-model [22] intended
to support the instantiation of context models that can be
integrated into dynamic monitoring infrastructures supported
by feedback loops. Figure 4 provides a simplified version of
our context management meta-model. An appropriate model
for supporting dynamic context management must enable the
instantiation of all the entities (contextual and infrastructural)
required to implement monitoring strategies at run-time. In
general the MonitoringCondition, Threshold and Observation
meta-classes provide a way of instantiating classes for repre-
senting SLA metrics; the ContextEntity meta-class supports the
instantiation of any context entity that is relevant to monitor
SLOs satisfaction; AcquisitionMechanism and Source support
the instantiation of context sensors; and ActionGuarantee
and PostCondition enable the implementation of enforcement
mechanisms.

VI. MANAGING CONTEXT AS A FIRST-LEVEL ENTITY

The management of SLAs is one of the main activities of
SOA governance [13]. However, current approaches for spec-
ifying machine-readable SLAs lack an explicit definition of
contextual entities and context-monitoring objectives beyond
the particular metrics for deciding on the accomplishment
of service level objectives (SLOs) under static conditions
[4]. If we intend to dynamically monitor context information
for supporting run-time governance, context information that
can affect the accomplishment of SOA governance objectives
should be specified at negotiation time, in the same way as
SLA parameters, metrics, and SLOs.

An SLA specifies the level of service contracted between the
service consumer and the service provider [4]. The obligations
of the agreement must define the service level objectives
(SLOs), which can be specified as predicates over service level
parameters, and action guarantees that define the actions to be
executed whenever a service level objective is violated.

We propose the definition of machine-readable context-
driven SLAs. Context-driven SLAs are service level agree-
ments where context monitoring requirements (relevant con-
text entities and context monitoring strategies) are explicitly
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specified as part of SLOs definitions. For this, we apply
feedback loops [15] and our context-monitoring meta-model
(cf. Fig. 4) to enable the adaptive behavior of monitoring
infrastructures, and exploit semantic web technologies [3]

together with our extensible context taxonomy (cf. Fig. 3)
to provide the vocabulary required for context representation
and reasoning. Machine-processable context monitoring re-
quirements specified as part of SLAs are the basis for the



implementation of dynamic monitoring strategies at run-time.

A. The Resource Description Framework (RDF)

Our approach exploits the resource description framework
(RDF) [20] to support the representation of context monitoring
requirements. Linked data uses RDF to make typed statements
(predicates) that link arbitrary things in the world (objects and
subjects) [3], [5]. In the same way, we propose an extension
to RDF graphs to represent context entities and elements of
the context management infrastructure required to implement
dynamic monitoring strategies. In our approach (i) RDF URIs
identify context entities and infrastructural elements for con-
text management (e.g., services delivering context sensors and
context providers), (ii) HTTP provides the vehicle to access
these entities, and (iii) the RDF/XML syntax together with
the available RDF processing tools (e.g., Jena [6]) and query
languages (e.g., SPARQL [21]) provide the operational repre-
sentation and applicable technologies required for supporting
context acquisition, provisioning and reasoning at run-time.
To support context reasoning in SOA governance and benefit
from the semantic web principles, we are currently developing
a definition of semantic rules built on top of SmartContext(our
proposed context taxonomy).

B. Context-driven SLAs

In order to realize the management of context information
as a first level entity for supporting run-time governance for
SOA and cloud environments, we exploit our proposed context
meta-model (cf. Fig. 4), and extensible context-taxonomy
(cf. Fig. 3) to propose the definition of context-driven SLAs,
and contextual RDF graphs to represent context monitoring
strategies as follows:

Definition 1 (Context-driven SLA). A context-driven SLA
SLASAQAY

, for a given service SA and quality attribute
QAY , is defined as a sequence of a finite arbitrary number of
pairs,

[(SLO1, CMS1), . . . , (SLOn, CMSn)]

where the first element in each pair corresponds to a spe-
cific service level objective (SLOi), and the second element
represents the SLO corresponding context monitoring strategy
(CMSi). An SLO is defined as a triple (p, a, s), where p
is an n-ary predicate used to evaluate a quality property on
the variables specified as its parameters; a is an action that
represents a guarantee to be executed in case the predicate
evaluates to false; and s is a postcondition that must hold
after executing action a. Conceptually, monitoring probes
report events that may require updating either the monitoring
infrastructure, the governed service-oriented system, or the
governance objectives. Predicate p determines whether this
update must be performed, action a represents an enforcement
mechanism that must be executed to guarantee the SLO, and
postcondition s provides the context facts that characterize the
desired situation after the execution of the enforcement action.

Definition 2 (Contextual RDF Triple). Given a set U of
RDF URI references, where each RDF URI reference identifies

an instance of any type derived from the context monitoring
meta-model meta-classes as presented in Fig. 4; a subset
UR of RDF URI references (UR ⊂ U), where each of its
elements identifies an instance derived from the meta-class
ContextRelationship defined in the meta-model as presented
in Fig. 4; an set B of blank nodes as defined in RDF graphs
[20]; and a set L of RDF literals instantiated from the
types defined in any context taxonomy compliant with the
SmartContext taxonomy (cf. Fig. 3), a contextual RDF triple
is a triple (e1, e2, e3) ∈ (U ∪B)×UR × (U ∪B ∪L), where
e1 is called the subject, e2 the predicate, and e3 is called the
object.

Definition 3 (Context Monitoring Strategy). A context moni-
toring strategy (CMS), also called a contextual RDF graph, is
a set of contextual RDF triples. That is, we define a CMS or
contextual RDF graph as a directed labeled RDF graph G =
(N,A,M, source, target), where N ≡ ((U − UR) ∪B ∪ L),
A ≡ UR, M is a set of strings to name the elements of UR,
and source, target : A×M → N , the mappings to represent
the corresponding source and target nodes of the arcs. The set
of nodes N represents context entities and context monitoring
infrastructural elements derived from the context-monitoring
meta-model presented in Fig. 4, the set of arcs A represents
context relationships between pairs of nodes, and the set of
strings M represents the names of the context relationships.
Therefore, a CMS is a regular labeled RDF graph such that its
universe (the elements of U ∪B∪L that occur in the triples of
G) is constrained by the types defined by the meta-model for
representing context monitoring strategies presented in Fig. 4,
and the context taxonomy in Fig. 3.

The detailed definitions of the Resource Description Frame-
work (RDF), its concepts, and abstract syntax are presented
in the RDF W3C Recommendation [20].

VII. AN ILLUSTRATIVE EXAMPLE

Software-as-a-Service (SaaS) is one of the business models
targeted by cloud computing environments. In SaaS models,
service-oriented systems are the most widely applied mecha-
nism to deliver software functionality as a service [28]. SaaS
provides customers with several benefits such as maintenance
and evolution supported by the cloud provider, high avail-
ability, pay-per-use, and low operation costs. To guarantee
low operation costs and thus contracted offers, performance
governance is an important concern. The mapping between
cost and performance was discussed in Sect. III.

Suppose an SaaS cloud provider is interested in governing
the efficiency of the service-oriented infrastructure with the
goal of optimizing operational costs. For this, a performance
SLA defines an SLO to guarantee a minimum efficiency of
0.9 for a particular ServiceA. The metric associated to the
SLO is the time behavior metric presented in Sect. III-B
(TB = execution time/total service invocation time).
The denominator, total service invocation time, represents
the total it takes for the service to respond after the corre-
sponding request. The numerator, execution time, indicates



the time consumed for processing a given interface func-
tionality. ServiceA is composed only of one task defined
as one interface implementation, thus the numerator is the
processing time required for executing that individual task
(i.e.,total service invocation time−waitingtime). TB is in
the range 0..1, where higher values indicate a better measure of
performance in terms of time efficiency. Finally, suppose that
an action guarantee will trigger a self-optimizing feature that
performs an on-line architectural reconfiguration to improve
the system efficiency.

This illustrative example is used in the following subsec-
tions to explain how we can optimize run-time SOA gover-
nance with our approach by managing context information as
a first level entity from negotiation to implementation, thus
equipping governance feedback loops with dynamic monitor-
ing capabilities. These subsections illustrate the usage of our
proposed definitions for context-driven SLAs, contextual RDF
triples, and context monitoring strategies (i.e., contextual RDF
graphs).

A. The Performance Context-driven SLA

Using Definition 1, the performance SLA for ServiceA
(SLASAPerformance) application example is defined as fol-
lows:

[(EfficiencySLO,CMSTimeBehavior)]

where the SLO is defined by the triple composed
of the minTimeEfficiency(TB, 0.9) predicate p, the
triggerSelfOptimization(ServiceA,measuredEfficiency)
guarantee action a, and the (p = true) postcondition s. That
is, the performance SLA defines an SLO to control the
ServiceA time efficiency; the SLO must be evaluated by
applying the metric time behavior TB, with a minimum
expected efficiency of 0.9; in case the SLO is violated, a
self-optimization action will be triggered to re-configure the
system with the goal of taking the service efficiency to the
desired levels. After the reconfiguration, the efficiency SLO
must hold (i.e., the predicate must evaluate to true).

B. The contextual RDF triples

Using Definition 2,
(InvocationInterface, isInstanceOf,ExecutableCodeUnit)

represents an instance of a contextual RDF triple in the
monitoring strategy for the efficiency SLO (cf. gray nodes in
Fig. 5 and their corresponding arc). In contextual RDF triples,
subjects (i.e., first element) and objects (i.e., third element) are
either entities derived from the context monitoring meta-model
meta-classes (except from the meta-class ContextRelation-
ship), blank nodes, or literals compliant with the SmartContext
taxonomy (cf. Definition 2). Predicates (i.e., second element)
are relationships between subjects and objects. In this triple the
context entity acting as the subject is the invocation interface
of ServiceA. The predicate indicates that the invocation service
interface is an instance of another context type, the object
ExecutableCodeUnit.

For simplicity, the contextual RDF graph presented in
Fig. 5 defines nodes as conceptual values instead of URIs.
Table VII-B presents the mapping between each element in
the graph and the elements of our context-monitoring meta-
model and context taxonomy. Those elements with no mapping
to context type (i.e, middle column) are elements required by
the context monitoring infrastructure to realize the monitoring
strategy (i.e. elements that are not classified as any of the
context entity types defined by the taxonomy).

C. The Dynamic Context Monitoring Strategy

The contextual RDF graph representation of the monitoring
strategy for the efficiency SLO of our illustrative example
is presented in Fig. 5. We optimize run-time SOA gover-
nance with our approach by supporting dynamic deployment
of monitoring strategies to address changes in monitoring
requirements. Variations in monitoring requirements can be
generated by changes in either the governed system, the
governance objectives, or context entities.

Suppose that ServiceA is replaced by a chain of service
compositions. With traditional static monitoring mechanisms,
the governance of the performance SLA is compromised as
the monitoring infrastructure was implemented to monitor
the time efficiency of the original service (in this case the
monitoring infrastructure was not designed to automatically
monitor a different service task interface). By supporting
dynamic monitoring, governance feedback loops are able to
deal with changes in monitoring requirements at run-time.
Our context taxonomy and context monitoring meta-model
enable the design and implementation of monitoring infras-
tructures with automatic inference capabilities to configure and
deploy new sensors and monitoring conditions at run-time.
In our illustrative example, immediately upon changes in the
composition of ServiceA, the infrastructure must be able to
recognize that new ExecutableCodeUnit entities have arrived
to the execution environment. That is, new task interfaces
and possibly new services must now be monitored. Then,
by applying RDF-based rules, the infrastructure will be able
to infer, based on the current monitoring strategy (i.e., the
contextual graph presented in Fig. 5), the meta-model and the
context taxonomy, that (i) the new entities to be monitored,
as the original monitored task interface, are also instances of
ExecutableCodeUnit context; and (ii) as ExecutableCodeUnit
is subClassOf ActivityContext, then the new entities have a
hasDuration relationship with a Time context entity. As a
result, the original monitoring strategy can be adapted to
deploy a new time sensor to gather time context from the
recently discovered task interfaces.

To realize the previous claims, we are working on the
extension of our taxonomy and context monitoring meta-
model with RDF-based context reasoning rules to support
the automatic inference of sensor types and other kinds of
infrastructure elements. These rules, extended from the basic
semantic rules defined in RDF, are cornerstones for realizing
context reasoning using our proposed contextual RDF graphs.



TABLE II
CONTEXT IDENTIFICATION AND CLASSIFICATION FOR THE APPLICATION EXAMPLE

Entity Context Type Meta-Class
Performance SLA Individual/.../GovernanceObjectives ContextEntity
Efficiency SLO Individual/.../GovernanceObjectives ContextEntity
SLO PostCondition PostCondition
AdaptationRequester ActionGuarantee
Monitoring Condition MonitoringCondition
Monitoring Function Function
ExecutionTimeSensor Individual/.../Duration AcquisitionMechanism
InvocationTimeSensor Individual/.../Duration AcquisitionMechanism
TaskInterface Activity/.../ExecutableCodeUnit Source
InvocationInterface Activity/.../ExecutableCodeUnit Source
ServiceA Individual/.../SoftwareInfrastructure ContextEntity
ExecutableCodeUnit Activity ContextType
Time ContextEntity ContextType
ActivityContext ContextEntity ContextType

Performance 
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Efficiency

SLO

 Monitoring 

Condition

(TB>=0.9) Monitoring 

Function 

(TB metric)

ServiceA

ExecutionTime

Sensor
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gathersTimeContext
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Interface

Task

Interface

implements

implements
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ActivityContext
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hasDuration

http://www…/ServiceA#invocation

http://www…/SmartContext/../ExecutableCodeUnit

http://www…/SmartContext/../ContextRelationShip\isInstanceOf

hasMetric

Fig. 5. The context monitoring strategy for the application example as a contextual RDF graph (simplified version)

VIII. RELATED WORK AND FINAL REMARKS

Advancing dynamic monitoring involves significant re-
search challenges to optimize not only run-time SOA gov-
ernance, but the adaptive behavior of any software system
affected by or dependent on internal or external stimuli.
To address many of their requirements, such systems must
be instrumented with effective context management mech-
anisms. Particularly in SOA governance, the integration of
dynamic monitoring strategies onto SLAs is a necessity to
(i) guarantee the relevance between monitoring infrastructures
and governance objectives, and (ii) control the consistency
of governance objectives with execution environments. We
propose a machine-readable specification of monitoring re-
quirements for QoS preservation intended to enable the in-
ference of new monitoring strategies at run-time according
to changes in context entities. Our approach instruments run-
time governance with control mechanisms to manage the
consistency between governance objectives and monitoring

instrumentation under dynamic execution conditions. Moni-
toring infrastructures based on our contextual RDF graphs
and their explicit mapping with governance objectives are able
to identify changes in monitoring requirements to reconfigure
themselves accordingly at run-time.

Other approaches have been proposed to deal with SLA
management at run-time. For instance, Zeng et al. proposed
a high-performance QoS monitoring system for web services
where the relevant context is observed from service operations
defined as operational events [29]. Another example is the
mapping between SLAs and QoS requirements of business
processes proposed by Stantchev and Schröpferas, as part of
SLA specification in grid and cloud environments [18]. At
negotiation time, business process requirements are compared
to infrastructure capabilities to define SLOs. Enforcement
mechanisms are executed based on service replication. How-
ever, despite the general agreement about the important role
of context information in preserving desired system properties,
contextual conditions are generally assumed as static observa-



tions that not require dynamic monitoring instrumentation to
be controlled. To our knowledge, the problem of monitoring
the preservation of system properties while managing context
as a first level entity throughout the system lifecycle, to
guarantee the consistency between monitoring strategies, gov-
ernance objectives, and context situations, is still an unsolved
challenge.
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