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Abstract

Software systems are pervasively becoming part of users’ daily life. In face of increasingly compet-
itive markets, companies are concerned with continuous service delivery and accomplishment of
agreed levels of fulfillment in service performance. Moreover, advances in autonomic computing
for strengthening responsiveness and resilience of service delivery have promoted the design of
re-configurable systems able to modify their structure and behavior at runtime. Guaranteeing
specific levels of performance in dynamic systems implies measurement mechanisms to evaluate
metrics that must be updated periodically, following the evolution of the system’s requirements and
also of its environment. Therefore, to actually ensure service performance, system administrators
require monitoring infrastructures to continuously measure the satisfaction of the different system’s
performance factors capable of (i) dynamically updating its monitoring strategies as the managed
system’s requirements or the environment evolves; (ii) realizing the deployment and integration
of monitoring components at runtime; and (iii) providing the means to generate composable,
traceable, and controllable monitoring capabilities. In this Thesis, we address these challenges
with the design of a scalable dynamic monitoring architecture, which implements and resolves
dynamic monitoring concerns in context-aware autonomic systems. Based on this architecture, we
also design and implement two domain-specific languages, Pascani and Amelia, that facilitate
the development of the aforementioned monitors, suitable to be integrated in the architecture, and
to automate their deployment into the running infrastructure of the target system. The relevance
of our work lies in the realization of automated mechanisms to support the preservation of the
monitoring pertinence in face of highly changing environments.

Keywords: Performance Monitoring, Dynamic Monitoring, System Deployment, Self-Adaptive
Software Systems



Resumen

Los sistemas de software están cada vez más compenetrados en la vida cotidiana de los usuarios.
Ante mercados cada vez más competitivos, las empresas se preocupan por la prestación continua de
servicios de software, y por el cumplimiento de niveles de rendimiento acordados respecto a dichos
servicios. Además, avances en computación autonómica para el fortalecimiento de la capacidad de
respuesta y recuperación en la prestación de servicios ha promovido el diseño de sistemas reconfig-
urables capaces de modificar su estructura en tiempo de ejecución. Garantizar niveles específicos
de rendimiento en sistemas dinámicos implica disponer de mecanismos de medición para evaluar
métricas que deben ser actualizadas periódicamente, siguiendo la evolución de los requerimientos
del sistema y también su entorno. Por lo tanto, para asegurar realmente el rendimiento de los
servicios, los administradores de sistemas requieren infraestructuras de monitoreo para medir
continuamente la satisfacción de los diferentes factores de rendimiento capaces de (i) actualizar
dinámicamente sus estrategias de monitoreo en la medida que los requerimientos del sistema o su
entorno evolucionen; (ii) realizar el despliegue y la integración de los componentes de monitoreo
en tiempo de ejecución; y (iii) proveer los medios para generar funcionalidades de monitoreo
componibles, rastreables y controlables. En esta tesis dichos retos se abordan con el diseño de
una arquitectura de monitoreo dinámica y escalable, que implementa y resuelve preocupaciones de
monitoreo dinámico en sistemas autonómicos sensibles al contexto. Con base en esta arquitectura,
también se diseñan e implementan dos lenguajes de dominio específico, Pascani y Amelia, que
facilitan el desarrollo de los monitores mencionados anteriormente, adecuados para ser integrados en
la arquitectura y para automatizar su despliegue en la infraestructura del sistema objetivo mientras
este está operando. La relevancia del trabajo presentado radica en la realización de mecanismos
para soportar la preservación de la pertinencia del monitoreo, frente a entornos altamente dinámicos.

Palabras Clave: Monitoreo de Rendimiento, Monitoreo Dinámico, Despliegue de Sistemas,
Sistemas de Software Autoadaptativo

ii



dedicated to my parents,

who taught me the language of love and forgiveness.

iii



Acknowledgments

I would like to express my deep gratitude to my thesis advisor Dr. Gabriel Tamura for all the
comments, guidance and critical analysis throughout this process. Although there is still a long
road ahead, I found myself being a very different person now.

I would like to thank Dr. Norha Villegas, who read over drafts and made suggestions to improve
this document. She also gave me positive comments that encouraged me to continue working hard
and improving everyday.

To all my friends and mates from the i2t/DRISO research team I can only offer my most sincere
thanks, for all the support and feedback. I spent very joyful moments with all of you that I hope
we can repeat sometime.

Finally, I would like to thank the Faculty of Engineering of Universidad Icesi for giving me a
full tuition scholarship for this master.

iv



Chapter 1

Introduction

1.1 Context and Motivation

Software systems have become a fundamental support for everyday activities, in both personal
and business contexts. On the one hand, individuals rely on software to accomplish duties and
responsibilities across their lifestyle; multimedia applications have become part of their daily
habits, including social networks, messaging, and online streaming of music, movies, and TV shows.
On the other hand, companies are increasingly dependent on software technology to support their
business objectives. Software is not only a base tool to cope with tedious administrative tasks, but
also the personal and business infrastructure to deliver value-added services to customers. These
two perspectives show the increasing dependence of users on their software applications and, as a
result, their increasing quality expectations on the provided application services (e.g., users want
to see video streaming in one smooth playback). Thus, in order to promote business strengthening,
stakeholders are concerned with the fulfillment of certain quality attributes (QA), especially those
sensibly impacting the system behavior as perceived by the client.

To ensure the fulfillment of the system’s QAs (e.g., guaranteeing service level agreements),
software designers have to consider mechanisms to measure the clients satisfaction, and to
overcome foreseeable disturbances able to deviate the system from its expected behavior. These
disturbances may be identified either in early stages of development, enabling architects to address
them from a design perspective, or in the operational stage, leaving system administrators with
the responsibility of overcoming them. Effective assurance can then be achieved by accurately
identifying the root causes of the detected problems, and generating adequate counter-effects to
correct the system behavior. Delegating such responsibility to system administrators implies IT
staff reacting to changes in the system behavior, at runtime. This can lead into ineffective assurance
of the quality contracts, as the identification and response processes performed by humans can
delay the corresponding mitigating actions. Instead, QAs assurance at runtime should rely on
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systematic procedures; these procedures should be supported by the realization of monitoring and
analysis concerns, such as mechanisms to measure, monitor, and control the system behavior [23].

As a result, a critical task to continuously fulfill the system QAs is to measure and monitor
the system behavior. Nonetheless, as monitoring is not generally considered as a first class
entity in the traditional software engineering process, the measurement of relevant monitoring
variables, related to the system QAs, is commonly performed by manually developing and adding
measurement code into several locations in the application source code, resulting in entangled
low-level implementations [23]. Despite this approach is simple at the beginning, it has multiple
drawbacks when the application components are generated automatically. First, after the system
components to be measured are generated, and then manually modified with the measurement
code, the generation mechanism cannot be used anymore, as the manually inserted code would
be lost. Second, as measurement variables are not defined as part of a standard measurement
mechanism, they are difficult to locate and share between developers [23]. Third, manually inserted
code for measurement targets the particular subsystem, making it not reusable.

Moreover, beyond taking raw measurement data, there should be a monitoring logic in charge
of processing and composing monitoring data in the form of variables and context events, to report
valuable data to appropriate stakeholders, such as service response time to system administrators,
and error occurrence to product managers. In practice, two monitoring considerations arise:
first, once a problem has been discovered, such as an unexpected long service response time or
high memory consumption in a short period of time, how to identify the corresponding system
components causing the problem? Reported data must contain the necessary information to
decompose the monitored measurements, allowing to dig further into the reported data. Second,
quality scenarios are subject to change, either because they are re-negotiated or because new
scenarios become relevant. Hence, manually developed measurement code must be carefully
analyzed and updated by application developers, given that they offer no support for self-adaptive
monitoring strategies to address changes in monitoring requirements [42].

Developing cost-effective monitoring solutions requires more than functional mechanisms, it
requires mechanisms providing standard and adequate specification formats, with the appropriate
level of abstraction and expressiveness. These characteristics configure the proper scenario to con-
sider Domain Specific Languages (DSLs) as a suitable alternative for automating the generation of
monitoring components systematically. DSLs can increase flexibility and reliability, thus increasing
productivity [29]. Additionally, DSLs can reduce considerable efforts in composing monitoring
specifications and measurements. Such solutions should also support runtime operations, that is,
operations to be applied while the system is in execution. These operations include managing
custom measurements and parameters, modifying the sampling frequency of discrete measurements,

2



and controlling the monitoring mechanism itself. In order to effectively apply these operations,
system administrators must be able to automatically and reliably deploy the necessary monitoring
infrastructure to continuously gather relevant information from the system. For these runtime
operations to be reliable, the generated components must be capable to report relevant traces of
the execution during regular operation, including before and after system updates take place.

Although system administrators are continuously observing the system behavior, context
conditions change dramatically in short periods of time, leaving them with no opportunity to
react properly and timely. In the mean time, interruptions in service provisioning take place, and
therefore, as quality expectations are not met, customer loyalty decreases. Furthermore, as systems
continuously grow and evolve into distributed networks of components, effective administration
and service delivery become a challenging problem [11]. In the social network domain, for instance,
Twitter experienced rough times when their infrastructure went over capacity; between 2008 and
2012 they reported 12 severe service outages1 before they completely change their infrastructure
in 20132. Some of these outages and response time increments were caused by unexpected service
requests during the 2010 FIFA World Cup [44] and the 2012 Summer Olympics3. To overcome
these situations, administrative tasks have to be automated, abstracting IT staff’s knowledge into
automated mechanisms able to properly respond to context changes. By doing this, responsiveness
and resilience of service delivery are strengthened [11]. These tasks have been grouped into
self-managing capabilities, as an approach to realize the vision of Autonomic Computing. That is,
systems that manage themselves in accordance to high level objectives specified by administrators
[28].

In spite of self-management capabilities reducing human intervention in system administra-
tion, developing self-awareness mechanisms (i.e., mechanisms enabling systems with awareness
regarding their own behavior) requires monitoring mechanisms able to dynamically update their
measurement strategy. That is, measurement procedures should be removable from the already
monitored components, and deployable on new components to start monitor them. Similarly, it
must be possible to modify the set of monitored variables by adding new ones or deleting existing
ones. As a result, it must be possible to substitute the monitoring logic dynamically at runtime,
as analyzed in [43, 40]. A complete or partial renewal of the monitoring infrastructure requires
performing deployment actions on monitors, that is: compiling new monitor implementations,
transporting them to the corresponding computing nodes, executing them, and resolving their
binding dependencies [20]. Furthermore, previous versions of them might have to be removed,
and some parts of the system might have to be recompiled into the running infrastructure. As in

1https://en.wikipedia.org/wiki/Twitter#Outages
2http://www.wired.com/2013/11/qa-with-chris-fry/
3http://www.theguardian.com/technology/2012/jul/26/twitter-down-olympics
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the monitoring case, according to the separation of concerns principle [17, 15], these deployment
actions require tailored specification formats, and adequate power of expression.

In summary, the motivation behind this thesis is the need for providing software systems with
monitoring infrastructures generated automatically and deployed at runtime. These dynamic moni-
toring infrastructures are required to continuously guarantee quality attributes in software applica-
tions that face changing context conditions that can violate these attributes’ fulfillment at runtime.
In spite of existing proposals focusing on the software engineering for self-adaptive software systems,
such as the DYNAMICO reference model, the aforementioned challenges are still open [43].

1.2 Problem Statement

Considering the motivation presented in the previous section, the problem statement of this thesis
is stated as follows:

Given an arbitrary service-component based software application, and a performance
monitoring specification, automatically generate the monitor(s) for this quality attribute,
and deploy and integrate the generated monitors into the software application, at run-
time. These monitors’ implementation must conform to the Service-Component Archi-
tecture (SCA) specification, and provide the functionalities of the monitoring element of
the DYNAMICO reference model [43] (i.e., provide dynamic performance measurement
mechanisms, deployable through reconfiguration actions at runtime).

1.3 Challenges

As previously mentioned in Section 1.1, monitoring mechanisms are key elements in ensuring quality
attributes. Despite monitoring has been widely applied by practitioners through several approaches,
the need for resilient systems to face today’s requirements has raised new challenges. In order
to cope with these still unresolved monitoring challenges, self-adaptive software systems require
dynamic monitoring infrastructures to continuously measure the satisfaction of the system’s quality
attributes, beyond manually inserted code, capable of:

1. dynamically updating its monitoring strategies as the managed system’s requirements or the
environment evolve.

2. realizing the deployment and integration of monitoring components at runtime.

3. providing composable, traceable, and controllable monitoring capabilities.

4. reporting composed and calculated monitoring data, with the associated raw measurements.
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1.4 Research Objectives

1.4.1 General

To develop standard mechanisms that generate monitoring infrastructures for performance factors
(e.g., latency and throughput), capable of deploying different measurement strategies at runtime,
in order to continuously satisfy performance service level indicators in service-component based
software systems.

1.4.2 Specific

1. To design a software reference architecture for the monitoring infrastructure required to su-
pervise the satisfaction of the performance quality attribute in component-based software
systems, with well defined and standard communication protocols.

2. To develop standard mechanisms that generate composable and traceable monitoring compo-
nents with the corresponding measurement procedures, from the specification of monitoring
concerns regarding the performance quality attribute.

3. To design and develop standard mechanisms to deploy software components, including the
preparation of target assets, their transportation to (possibly) distributed computing nodes,
their execution, and system resources’ clean up.

4. To design and develop a strategy for integrating measurement strategies by deploying moni-
toring artifacts at runtime, and updating the target system’s running infrastructure.

1.5 Methodology

The adopted methodology for developing this thesis is a qualitative approach [12] to both develop
and validate our solution. On the one hand, in the development phase, qualitative methods are
used to guide our state of the art exploration, starting with a literature review mainly focused on
the motivation and need for self-managed software systems, as a way to advance on the design
of autonomic systems [28]. Moreover, since our interest is to automate monitoring (i.e., develop
the means to realize self-awareness), we require reference models and architectures to effectively
implement dynamic monitoring infrastructures through self-adaptation mechanisms. Additionally,
we also need to survey mechanisms for specifying and deploying monitoring software components,
using a Domain Specific Language (DSL) approach. On the other hand, in the evaluation phase, we
use qualitative methods to evaluate i) the completeness of our solution regarding the requirements
and related quality scenarios presented in chapter ??, and ii) the expressiveness and usability of
the two DSLs composing our solution. To this end, we perform a workshop for each language,
using a non-trivial and relevant case study.
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In order to accomplish the established set of specific objectives, we achieved the following mile-
stones in this project:

1. Elicitation of requirements and architectural design.

(a) Identification and specification of the monitoring requirements to realize performance
quality self-awareness.

(b) Specification of the deployment requirements to automate component distribution and
execution, and service binding.

(c) Design of the software architecture for the envisioned monitoring infrastructure.

(d) Development of standard mechanisms to supply software components with capabilities
for traceability and logging.

2. Design and implementation of two DSLs to specify, generate, compile, and execute perfor-
mance monitoring concerns, as well as specify and realize deployment updates at runtime.

(a) Design of each DSL corresponding syntax and semantics.

(b) Design of the context-free grammars in correspondence with the proposed syntax.

(c) Design and implementation of the translation and execution models according to the
proposed semantics.

3. Development of a proof-of-concept implementation, including the case study artifacts, the
corresponding quality attribute monitors and deployment descriptors using the developed
DSLs.

4. Analysis and evaluation of results.

1.6 Thesis Organization

The remaining chapters of this thesis are organized as follows. Chapter 2 presents the background
and state of the art of the main concepts involved in this research: Component Based Software
Engineering, Service Component Architecture, Self-managed Software Systems, Domain Specific
Languages, and most importantly, System Monitoring and Software Deployment. Chapter 3 ana-
lyzes the high-level functional requirements for designing and implementing our envisioned dynamic
monitoring architecture, along with the related quality considerations. Chapter 4 presents Pascani
and Amelia, two domain-specific languages for specifying dynamic performance monitors, and de-
ploying them into the target system’s running infrastructure, respectively. Chapter 5 details the
design and realization of our proof-of-concept implementation. Lastly, Chapter 6 concludes this
thesis and proposes future work.
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1.7 Contribution Summary

The main contributions of this thesis are:

An Architecture for Dynamic Performance Monitoring

We present an scalable dynamic monitoring architecture that implements and resolves dynamic
monitoring concerns in context-aware self-adaptive software systems. Our architecture pro-
motes the generation of composable, traceable, and controllable monitoring components. The
relevance of this contribution lies in the realization of automated mechanisms to support the
preservation of the monitoring pertinence in face of highly changing environments. This work
has been partially presented in [26, 3, 4].

A Performance Monitoring Language

We created a domain-specific language named Pascani to ensure that monitoring concerns can
be specified using a standard and adequate format, with the appropriate level of abstraction.
Pascani allows to define and update context variables in models that can be shared across
several monitor specifications. From the monitoring specifications, the language engine gener-
ates SCA-compliant components that are composable, traceable, and controllable. This work
has been partially presented in [4].

A Deployment Language for Component-based Systems

We created a domain-specific language named Amelia to abstract and facilitate the systematic
realization of system deployment. The language constructs offer great power of expression for
building systems and executing artifacts into distributed computing infrastructures. From
Amelia specifications, the language engine generates an executable Java program with status
reporting and logging capabilities able to deploy SCA-compliant components to the specified
computing nodes.
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Chapter 2

Background and State of the Art

Section 1.1 established our motivation to advance in the automated generation of monitoring systems
as a required medium to fulfill system performance assurances. In order to understand the relevance
of this thesis, and its associated challenges listed in Section 1.3, it is important to establish the
background and the main concepts involved in this project: Component Based Software Engineering
(CBSE), Service Component Architecture (SCA), Self-managed Software Systems, Domain Specific
Languages (DSL), and most importantly, System Monitoring and Software Deployment. The order
in which we introduce such concepts follows a general-to-specific sequence.

2.1 Component-based Software Engineering

Component-based Software Engineering (CBSE) is an approach to software development that
relies in software reuse, based on a set of design principles and standards for implementation,
documentation, and deployment, encapsulated into a component model. In this paradigm,
components are opaque software units with well defined services and explicit dependencies on other
components. Services are made visible through interfaces, making it possible for components to
rely on expected behavior, and therefore, be developed and deployed independently [5]. Interaction
among components is realized by communicating components, binding required services (i.e.,
dependencies) with provided services, through communication protocols (e.g., SOAP, REST or
RMI).

According to the CBSE vision, components are independent and flexible units of software that
allow to build systems with improved predictability based on components’ properties, component
markets, and reduced time-to-market [5]. However, one of the open challenges in CBSE is Compo-
nent trustworthiness, that is, how can components from unknown sources be trusted? and in the
same sense, who will certify the quality of those components? These and other concerns have been
addressed by the software community, producing new component models (e.g., Service Component
Architecture [7]), middleware (e.g., FraSCAti[37]), and related technologies.
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The Service Component Architecture Specification.

Extending the vision of CBSE, the SCA specification defines a general approach to assemble Enter-
prise Applications (EA) based on components and services, providing a standardized mechanism
for wrapping individual services into high-level business pieces [10, 38]. Accordingly, since SCA
follows the vision of Service Oriented Architecture (SOA), by supporting these high-level compo-
nents, SCA not only standardizes but also simplifies the build, deployment, and management of EAs.

High-level components are realized through composites, that is, XML descriptors containing
components and service dependencies, including both provided and required services. These inner
components in a SCA application may be implemented using different programming languages
and/or technologies, such as Java, C++, OSGi, and BPEL, and wired using different binding
implementations, such as Web Services, JMS, RMI, and JCA.

Current implementations of the SCA specification include open source projects, such as Apache
Tuscany [2], Fabric3 [33], and FraSCAti [37], and commercial products, such as IBM Websphere
Server Feature Pack for SCA [25], and Oracle Tuxedo [36]. Nonetheless, FraSCAti is the only
implementation that currently offer the capabilities of dynamic reconfiguration at runtime. The
relevance of CBSE and SCA in this thesis is that they define the target platforms for our contribution
(i.e., code generation).

2.2 Self-managed Software Systems

In face of increasing levels of complexity in today’s computing systems, the autonomic computing
model arises in response to the increasing difficulty of managing systems well beyond managing
individual software environments [28]. An autonomic computing system can manage itself given
high level directives, such as policies, from its administrators. These systems continuously monitor
their operation in order to detect changes in internal or external conditions affecting the fulfillment
of their quality attributes; then, autonomic systems adjust their operation to guarantee continuous
alignment with high level objectives [28].

At the core of autonomic computing is self-management, as an approach to reduce human
intervention in operative and detailed system administration and maintenance tasks. These
tasks are classified in four properties of self-management: self-configuring, the ability to realize
automated configuration of components and systems from high level policies; self-optimizing, the
ability for components and systems to continuously search for optimal efficiency and performance
improvement; self-healing, the ability of the system to discover, diagnose and recover from
software and hardware faults; and self-protecting, the capacity of the system to anticipate and
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defend itself from malicious attacks or unplanned cascading failures.

In [28] IBM researchers Kephart and Chess presented an architectural approach to self-managing
systems, proposing the structure of an autonomic element; this approach contains the elements
comprising the MAPE-K reference model, namely: Monitor, Analyzer, Planner, Executor, and
Knowledge base. Each of these elements has specific responsibilities to accomplish system-level
adaptations, either by structural or behavioral modifications of the system itself. Following are the
functions of each element [8]:

Monitors sense relevant context information from the target system (i.e., the managed system),
such as service latency and throughput, or data about the current state of the computing
infrastructure;

Analyzers analyze context data and determine whether or not an adaptation must be performed;

Planners synthesize a set of actions (i.e., the adaptation plan) to alter the system’s behavior, in
accordance with the adaptation symptoms identified by the Analyzer;

Executors realize the adaptation plan through the available adaptation mechanisms, such as ar-
chitectural reconfiguration and parameters tuning; and

Knowledge base is a set of data sources enabling data sharing —required to make self-
management decisions— among Monitors, Analyzers, Planners, and Executors.

The relevance of self-managed software conception and vision in this thesis is that it constitutes
the foundational strategy for our solution, even though we are focused on the monitoring aspect.

2.3 Domain Specific Languages (DSL)

As its name implies, a DSL is a specific purpose language whose syntax and semantics are tailored
for specifying software artifacts (i.e., program specifications) in a particular application domain
(e.g., testing, monitoring, security). It is designed to provide a specific notation to express solutions
at different levels of abstraction using the vocabulary of the application domain. As a result, a
well designed DSL is more flexible and effective than a traditional library, improving programmer’s
productivity, maintenance costs, and communication with domain experts [21]. Moreover, stake-
holders can gain the understanding to validate and modify these program specifications [32].

DSLs increase not only productivity but also flexibility and reliability in software systems
[29]. Developing a DSL can lead to automatic code generation and assembly, producing less
error prone solutions. However, despite these advantages, Deursen and Klint [41] mention some
maintenance disadvantages, including: first, using a DSL implies a shift from maintaining hand-built
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applications to maintain (i) DSL programs specifying each application (although possibly with
reusable elements), (ii) the DSL compiler, and (iii) the DSL library containing the basic set of util
objects. Second, although programming languages are more difficult to learn and use, there are
plenty of learning material such as courses, manuals, tutorials, and experienced professionals; in the
case of a new DSL, all this material must be created by the DSL developers. Additionally, other
authors consider as a disadvantage the unfamiliarity on how to fit DSLs into a regular development
process [23, 39].

An important part of the contributions of this thesis is based on DSLs.

2.4 System Monitoring

In face of increasingly competitive markets and a continuous raise in the demand of pervasive
services, companies are concerned with measuring and improving operational efficiency based
on data gathered directly from the infrastructure itself. This has raised a demand for advanced
mechanisms providing continuous monitoring of systems supporting their business activities [23].
Continuous monitoring differs from other techniques to measure performance (e.g., profiling)
in that its ultimate goal is not related to individual measurements, but to the permanent
application of them; from the set of obtained measurements, a single value is calculated and
compared with a reference value, such as a Service Level Indicator. Furthermore, detailed infor-
mation about single measurements is useful to further analyze root causes of unexpected system
behavior. However, capturing events can become difficult to handle in real time applications [31, 45].

The main objective in implementing system monitoring is to provide the means to report high-
level activities that allow further processing to answer business-level questions, such as "what is
causing the system to fail fulfilling the X quality agreement?" or "Why after the last system update
user searches were reduced by Y%?". Answering these questions requires tools allowing to view the
system in terms of how it is used, instead of how it is built, which is commonplace for monitoring
technology [31].

Monitoring the System Behavior

In order to measure and control operational efficiency, tools and mechanisms are required to
evaluate and assess the system state, behavior, and overall wellbeing and health. Currently,
the main approach to monitor and assess such variables is through the use of metrics. Metrics
are captured in critical measurement locations defined by the system’s constituent components,
allowing to characterize quality in service provisioning [35].

Effective monitoring mechanisms should consider at least two major tasks: the events
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measurement process, and the events correlation and assessment process. The measurement
process is performed by in situ sensors that generate events containing low level data related to
service executions, such as execution times, memory consumption, and exceptional behavior. The
correlation and assessment process gathers measurements from different sources (i.e., sensors),
composes them and computes single values. In case any unexpected behavior is found, monitor
elements report the events to other MAPE-K elements. However, characterizing system behavior
is not a trivial task, systems typically produce zillions of events per unit of time, which makes
understanding system behavior a still open challenge [31]. This means that current technology
only enables systems to see the events, not to make sense of them.

A first step towards understanding system behavior is tracking events causality, that is, being
capable of tracing incidence of one event in the occurrence of subsequent events. Event causality is
called horizontal when the causing and caused events happened at the same conceptual level in the
system, and vertical when the causality relation is determined by the different layers composing the
system [31]; in the latter, events are commonly referred to as low and high level events, depending
on how close they are to the business layer. From causality tracking, complex patterns of events
can be identified, and characterized as important behavior to report. Moreover, discovering these
patterns and correlating them with contextual information, such as the current system state or the
season of the year, can help avoiding certain behavior by generating appropriate counter-effects into
the system.

2.4.1 Profiling, Monitoring and Tracing

Profiling, monitoring, and tracing are techniques used to identify specific behaviors in a system
under operation. However, each of these techniques is valuable for different reasons, and its main
purpose is specific to a certain concern. First, monitoring is usually an ongoing activity that
is continuously observing elements or properties of the system. Based on that, when monitored
elements fall below or above specific values, the monitoring mechanism triggers alerts, notifying
interested stakeholders. Second, software profiling is a technique for dynamic program analysis
that measures resources usage, such as CPU time, memory, and I/O, as well as execution time.
This technique is usually for identifying code candidate for performance optimization. As it is a
resource demanding activity, profiling is performed in development environments, as opposite to
software monitoring which is (usually) used in production. However, program profiling can be also
done using logs and/or monitoring data. Lastly, software tracing refers to trace the execution of
a program. Program tracing is usually used in software testing, and it can be useful in different
type of scenarios, such as call tracing, which helps in determing why a program is failing or not
responding as expected, code coverage, which records which parts of a program were executed in
a test suite, and live debbuging, which allows to execute a program instruction by instruction in
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order to identify programming errors.

2.4.2 Monitoring System Performance

System performance depends upon the nature of the resources used to fulfill requests, and how
shared resources are allocated when multiple requests occur in the same resources [6]. According
to the performance taxonomy presented in [6], the performance concerns or requirements used to
specify and assess the performance of a system are latency, throughput, capacity, and modes. These
concerns are described below:

latency refers to a time window during which an event must be processed and a response must be
produced.

throughput refers to the number of responses that have been completed in a given observation
interval.

capacity is a measure of the amount of work that a system can perform. It is usually defined in
terms of throughput. In that case, capacity refers to the maximum achievable throughput
without violating latency requirements [9] (as cited in [6]).

modes refers to the response of the system performance in face of different (or changing) scenarios
regarding latency, throughput, and capacity.

These performance concerns help in specifying the expected performance of a system from differ-
ent fronts. Moreover, they can be tailored to specific needs, in a way that performance measurements
have a particular meaning depending on the problem that the system solves.

2.5 Software Deployment

Software deployment is a post-production process that takes place between software acquisition and
execution, and is performed for or by the software user [16]. Deploying a software system may be
considered to be a process consisting of a set of interrelated activities within the deployment life
cycle.

2.5.1 The Software Deployment Life Cycle

Hall et al. present in [24] a software deployment life cycle composed of several interrelated activities.
Figure 2.1 depicts the different states of a system during its deployment life cycle, in which transi-
tions are deployment activities. These activities are classified into two roles: software producer, and
consumer. The first one consists in creating a packaged version of the software in order to provide
a deliverable product, and the second one consists in configuring the provided package to execute
it such that it can be used.
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Figure 2.1: Deployment Life Cycle. Adapted from [18]

Producer-Side Activities

release is the bridge between development and deployment. This activity is in charge of all the
necessary tasks to prepare, package, and provide a system for deployment in consumer sites.
The released package contains the software resources, such as libraries, configuration files, and
executables, as well as descriptors specifying the resources required to deploy the software.

retire is the process of removing support for a software system or a given configuration of a software
system. Retiring a system makes it unavailable for future deployments.

Consumer-Side Activities

install is the initial consumer activity in charge of the configuration and assembly of all the re-
sources necessary to use a given software system.

activate and deactivate are activities that allow the user to actually use a given software. For
simple tools, these activities are usually realized through the creation of certain command, or
clickable icon, for executing and stopping a binary component of the tool. Complex software
may be composed of several components that must be executed in order to use it.

reconfigure, update, and adapt are the activities responsible for changing and maintaining the
configuration of the deployed system. These activities may occur any number of times, in
any order. The objective of the update activity is to deploy a new, previously unavailable
software configuration. The reconfigure activity also changes a previous installed software, but
selecting a different configuration. The adapt activity is in charge of monitoring the deployed
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software system, and respond to changes in order to maintain consistency in the deployment
software system.

remove is the activity performed when the deployed software system is no longer required at the
consumer site. This activity implies the undo of all changes caused by previous deployment
activities at the consumer site.

2.5.2 Build Automation Software

Before a software product can be used by its intended users, the software developers must compile
the source code for a particular target platform; that is, build a software release. The process of
compiling source code takes as input individual source code files, or a parent directory containing
all the files composing a program, and generates one or several binary artifacts that are then
executed or interpreted by another program. When the source code makes use of third-party
libraries, the compiler must know these libraries as well in order to find errors in the program and
optimize the generated binary artifacts.

As the software grows, the compilation process can become difficult, time consuming and error
prone. Furthermore, as developers may work on different subsystems, manually compiling the whole
software system will eventually worsen the scenario. To overcome this, building the software system
is generally automated using scripts or more advanced tools such as Make, Maven, or Ant. Build
automation is different than deployment automation, continuous integration, and continuous deliv-
ery. These processes are focused on deploying or installing a release into a particular environment,
build a software product as developers check-in changes in the source code, and a combination of
both, respectively.
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Chapter 3

Problem Domain Analysis: Dynamic Performance

Monitoring

In this chapter we analyze the high-level functional requirements for designing and implementing
our envisioned dynamic monitoring infrastructure. We start by specifying the requirements for
the Monitor and Sensor elements of the MAPE-K reference model [11]; then, we continue with the
definition of the requirements for our dynamic monitoring infrastructure, inspired by DYNAMICO’s
monitoring feedback loop [43]. finally, we identify a set of quality considerations that are relevant
for the design of our monitoring infrastructure.

3.1 Requirements Elicitation

3.1.1 MAPE-K: Monitoring Requirements

Our aim at developing this thesis is to provide standard mechanisms to monitor software appli-
cations’ performance in dynamic contexts. Aligned with the vision proposed in the DYNAMICO
reference model [43], our approach needs to support changing values and thresholds of the context
variables and the monitoring logic that capture them (cf. Section 1.3). As the feedback loops
present in such reference model are based on the MAPE-K reference model [11], a first approxi-
mation to the design and implementation of DYNAMICO’s dynamic monitoring infrastructure is
to consider the Sensor and Monitor elements from the MAPE-K reference model. Nonetheless, we
identified a lack of a detailed and standard reference specification and architectural design for such
model. In light of this, in [3, 4] we presented a base design for building autonomic systems using
MAPE-K, including the structural and behavioral architectural designs.

IBM’s architectural blueprint for autonomic computing describes the high-level functions com-
posing the internal structure of an autonomic manager [11]. From IBM’s proposal, we have identified
a set of functional requirements for the elements composing the MAPE-K reference model. Although

16



the requirements in this section are focused on the monitoring part only, the rest can be found in
[4]. The following requirements are split in Sensors and Monitors. On the one hand, sensors are
elements consisting of a set of properties exposing the current state of certain manageable resource,
and a set of events that occur when the manageable resource’s state changes. From now on, we refer
to sensors as probes, since that name is more accurate to our approach. On the other hand, moni-
tors are elements that collect details from the managed resources, using a standard manageability
interface to probes, and correlate them into symptoms that can be analyzed [11].

Software Probes (also called Sensors) Requirements

S1 A probe must collect measurements of variables of interest (from now on, referred to as
sensed data) (e.g., quality attributes specified in the series of standards ISO 25000 such
as performance of a service, availability of resources, topology information, configuration
properties) [1] in the context in which it is located, that is, its execution context or the
context of the domain to which it belongs.

S2 A probe must temporarily store sensed data.
Rationale. The monitors’ responsiveness relies on the timely availability of the sensed
data. This availability can be achieved by supporting temporary storage, which would
allow monitors to gather data at any moment. Nonetheless, a drawback of this approach
is that probes can use memory space that should be available to the target system, thus,
other storage options should be considered.

S3 A probe must expose a subset of the sensed data to the set of monitors, in both cases:
when monitors and probes have been deployed jointly and when they have been deployed
independently.

S4 A probe must remove a subset of the sensed data being stored temporarily when instructed
by a monitor.

S5 A probe must perform primitive operations (e.g., count repetitions of a measurement in
a given time interval) on a subset of the sensed data.
Rationale. The ongoing transmission of sensed data from probes to monitors can overuse
network resources, thereby hindering the target system’s regular operation. Placing primi-
tive operations in probes can considerably reduce the amount of data transmitted through
the network when monitors do not require the entire collection of sensed data but, instead,
computations on it.

Monitor requirements

M1 A monitor must obtain the sensed data from one or more probes, where it has been
captured, through the required access modes, that is, by request (pull) or per occurrence
(push).
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M2 A monitor must compute metrics (based on sensed data) related to the variables of interest
to characterize the current state of the target system. These calculations can be triggered
periodically or per measurement occurrence, can produce average or instant calculations,
and this calculation can also involve the composition or correlation of metrics calculated
by other monitors.

M3 A monitor must make the calculated metrics available, through a Knowledge Manager
element, to other monitors so they can compose their own calculations.

M4 A monitor must filter the calculated metrics before being reported to the Analyzer element.
The filter must be applied through a set of domain-dependent monitoring rules over the
calculated metrics.

M5 A monitor must report to the Analyzer element control symptoms, i.e. the metrics (simple
or compound) that meet the conditions set by the monitoring rules.

M6 A monitor must allow changing the periodicity in which it calculates its metrics.

3.1.2 Dynamic Monitoring Infrastructure Requirements

In the previous subsection we specified the functional requirements for the monitor and probe ele-
ments according to IBM’s blueprint for autonomic computing. Varying monitoring requirements is
not a concern in such proposal, therefore, the requirements above are insufficient in our effort for
implementing the monitoring infrastructure to support dynamic capabilities specified for the mon-
itoring feedback loop in the DYNAMICO reference model. Subsections 3.1.2.1 and 3.1.2.2 present
the requirements of the Dynamic Monitoring Infrastructure, along with corresponding quality con-
siderations.

3.1.2.1 Functional Scope

We extend the functional requirements of the monitor element in order to orchestrate a dynamic
monitoring infrastructure, composed of four stages: data acquisition, data aggregation and filtering,
data persistence, and data visualization. Our approach to the first two stages is to provide tailored
syntax and semantics in order to separate application code from monitoring logic, and to ease the
specification of probes and monitors. Regarding the last two stages, as context variables may differ
in their nature, it is necessary to consider different data storage and visualization technologies.
Because of this, these stages are considered as pluggable elements of infrastructure.

Data Acquisition

M7 The definition of a monitor must specify the probes it requires to acquire measurements
regarding its variables of interest.

M8 Probes must be deployed independently from the target system’s components. This im-
plies that already deployed components can start being monitored at any time.

18



M9 Probes must be capable to intercept different types of events associated with service
execution, including: invocation, return, execution time, network communication time,
and/or exception.

M10 For custom events raised at a lower level than service execution there must exist a library
to program custom probes. These custom probes must be accessible in the same fashion
that built-in probes.

M11 Developers must specify how to create, update, and retrieve measurement values for cus-
tom metrics. In the case of retrieval operations, define whether access mode is by request
or per occurrence.

Data Aggregation and Filtering

Application developers are concerned with the design and development of the mechanisms for ag-
gregating and filtering the monitoring data of interest; and at the same time, they are concerned
with the integration of existing code bases in order to increase productivity and quality. However,
crosscutting code compromises the comprehension and evolution of the monitoring components [23].
Accordingly, the monitoring infrastructure should provide standard mechanisms with established
protocols to:

M12 Localize, use (i.e., get and set values), and share context variables through a standard
mechanism. Such mechanism must support the addition and removal of variables at
runtime.

M13 Manipulate collections of events and perform calculations over them.
M14 Define reference values (e.g., service level indicators) and compare measurement values

against them in order to notify external services about unexpected behaviors.
M15 Attach new measurements with contextual information.

Rationale. Tagging measurement data would allow to categorize variables’ values, giving
meaningful information to search and filter measurements for visualization purposes.

M16 Use existing class libraries in order to perform calculations or invoke existing APIs in
order to aggregate and/or filter measurements.

M17 Specify handling logic for service execution events, periodic events (i.e., time-based
events), and changes in context variables.

M18 Update the set of monitoring rules it applies to perform the filter of metrics.

Data Persistence

M19 The monitoring infrastructure must support persisting context variables on disk, along
with their contextual information. The persistence mechanism should be applied inde-
pendently from the monitors updating the context variables.
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M20 Different persistence technologies can be applied to different variables.
Rationale. The widespread use of NoSQL technologies has promoted the appearance of
simplified databases aiming at improving performance and scalability in data storage and
querying; third-party services and libraries for managing logging and metrics information,
for instance, are a relevant option.

Data Visualization

M21 Developers must be able to create visualizations (e.g., charts) summarizing historical
measurements associated with the context variables.

M22 Data visualizations must allow to graphically represent data associated with the built-in
events raised in probes.

M23 Developers must be able to pre-process (e.g., filter, transform, correlate) historical mea-
surements in order to provide visualizations of relevant data.

3.1.2.2 Quality considerations

Relevant quality considerations include the compatibility, co-existence and interoperability implied
by dynamic deployment and re-deployment of monitors and probes, scalability of the infrastructure,
and standard composability and controllability mechanisms. By composability we refer to the
quality property characterizing software artifacts that can be composed and reused effectively,
in order to maximize their cost-effectiveness [26]. Tables 3.1, 3.2, 3.3, and 3.4 detail the quality
scenarios associated with these considerations. These quality scenarios are based on the definitions
of quality attributes in [6].
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Quality Scenario 1. Interoperability in dynamic deployment and re-
deployment of monitors and probes

Quality attribute Compatibility, Co-existence and Interoperability
Justification Deployment and re-deployment tasks can lead the Monitor-

ing Infrastructure into an erroneous state given that com-
ponents (i.e., probes and monitors) can be re-inserted into
the same running middleware, or context variables can be
defined more than once. Moreover, updates to the target
system’s components can stop probes from continue work-
ing.

Stimulus An already deployed Monitor is re-deployed.
Source of stimulus A change in the monitoring logic and/or in the context vari-

ables.
Artifact Monitoring infrastructure components responsible for gen-

erating and deploying the new components.
Response The Monitoring Infrastructure performs the necessary ac-

tions to support the (possibly) generation of new probes
and monitors, and ensure that they are deployed correctly.
If they were already deployed but require logic modifica-
tions, to undeploy them before re-deployment, and ensure
that variables are defined only once.

Table 3.1: Quality scenario for Co-existence and Interoperability of Monitors and Probes

Quality Scenario 2. Scalability of the Monitoring Infrastructure
Quality attribute Scalability
Justification Continuous monitoring can generate large amounts of events

and logging information, which requires mechanisms to sup-
port taking advantage of new computational resources, if
available. Components that are being monitored can reach
an unresponsive state.

Stimulus Monitors and probes reach critical usage levels of computing
resources’ capacity (e.g., disk, memory, network).

Source of stimulus target system’s services are on high demand.
Artifact Monitoring infrastructure components responsible for ac-

counting and deploying the new or existing components in
new computational resources.

Response Some components of the Monitoring Infrastructure (e.g.,
Monitors) are deployed in new computing resources.

Table 3.2: Quality scenario for Scalability of the Monitoring Infrastructure
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Quality Scenario 3. Composability of monitors
Quality attribute Modifiability - Modularity
Justification Monitors must be capable of effectively reusing already ex-

isting monitoring elements, such as probes, in order to in-
crease development productivity.

Stimulus A monitor needs to receive measurements from an already
existing and deployed probe.

Source of stimulus A new monitor is under development as response to emerg-
ing monitoring requirements.

Artifact The architecture of the dynamic monitoring infrastructure
supports the composability of generated monitor compo-
nents.

Response Probes are identifiable and targetable within the monitoring
infrastructure, in a way that new monitors can subscribe to
them for receiving new measurements.

Table 3.3: Quality scenario for Composability of Monitors

Quality Scenario 4. Controllability of Monitors
Quality attribute Modifiability - Changeability
Justification Changes in the Monitoring Infrastructure include not only

modifying the measurement strategies or monitoring logic,
which would require re-deployment, but also (re)configuring
the execution at runtime.

Stimulus A re-negotiation of the Service Level Indicators causes a
modification on the calculation period of certain measure-
ment.

Source of stimulus The target system’s context
Artifact A monitor performing periodical calculations on the sensed

data.
Response Monitors expose a manageability interface to allow external

components modifying the calculation period for a given
measurement.

Table 3.4: Quality scenario for Controllability of Monitors
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Chapter 4

Solution Domain: A DSL Approach to Dynamic

Monitoring and Deployment

In this chapter, we introduce the global design of our solution. Then, we explain the implications
of the related quality concerns on the proposed design, and provide an overview of the resulting
monitoring infrastructure. Finally, we explain in great detail the design of Pascani and Amelia,
two domain-specific languages composing our solution.

4.1 Overview of the Global Architectural Design

In Chapter 3, we introduced the functional requirements to realize our envisioned Dynamic
Monitoring Infrastructure, and related quality concerns. In this set of requirements, we identified
two important groups: the first, related to the software monitoring tasks, and the second, to the
deployment of these monitoring artifacts. We address these requirements and quality concerns by
designing two domain-specific languages named Pascani and Amelia, respectively.

Figure 4.1 illustrates the component-based model of our global architectural design. From a
set of Pascani monitor specifications, the language engine generates SCA-compliant monitoring
components implemented in Java, and the corresponding Amelia deployment specification. From
a deployment specification, the Amelia language engine generates an executable Java program
able to communicate with UNIX-based computing nodes in order to execute the necessary opera-
tions to deploy the specified SCA artifacts. Once the monitoring components are running in the
infrastructure, along with a set of provided monitor probes, the infrastructure continously gather
performance data from the Target System. This is done by sending measurements from probes to
monitors, using either pull or push communication. Either way, this data is then used to update
the context variables, which in turn are stored in one or several databases. From there, the IT per-
sonnel can visualize the current system performance, modeled as context variables, using different
dashboard technologies. To better understand our solution approach, we further explain it using
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an example in the next section, which gives more detail on how the proposed architecture supports
the development of monitoring strategies for an online retailing system.

Pascani Monitor
Speci cation

Pascani Monitor
Speci cation

Pascani Monitor
Speci cation

SCA monitors generated
with Java support

Amelia Deployment
Speci cation

Pascani DSL Engine

Amelia DSL Engine

UNIX Shell scripts and 
supporting Java classes

Dynamic Monitoring
Infrastructure

Data store(s) Monitoring Dashboard(s)

Built-in Probes

Target System

Other SCA components
and Java classes

Figure 4.1: Global architectural design (informal) of our proposal

Dynamic Monitoring: The Online Store Retailer Example

In e-commerce, an Online Store Retailer (OSR) application allows customers to shop for products
and services through the Internet. Users browse a catalog of products and select the ones they
want to purchase by adding them to a shopping cart. Furthermore, with the proliferation of
personal context and user-centric recommendations, users expect from OSR applications product
recommendations based on their preferences. To complete the purchase, customers initiate the
checkout process by entering information about delivery and payment preferences. Delivery
preferences include information such as the shipping address and the preferred delivery service.
Payment information includes data about the preferred payment method such as billing address,
the credit card number, security code, and holder name. OSR applications typically compose
several third-party services to recommend relevant products, complete the checkout process, and
confirm the order delivery. In a similar way, for completing the checkout process, OSR applications
use a postal address verifier service to verify that the shipping and billing addresses do exist; a
credit card verifier service to confirm all the information about credit cards; and a delivery service,
with its corresponding delivery tracking service, to dispatch the order and for the user to monitor
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the delivery process. Different software vendors already provide instances of these services to be
used manually by humans, and programmatically through public APIs.

Assume that a local business has been receiving complaints from their customers during the
last two weeks. According to their ticketing system, there are sporadic long delays when finalizing
a purchase in their OSR application. After deeper conversations with the affected customers, and
some infrastructure analysis, the IT personnel assures that this issue must be related to one of the
third-party services involved in the checkout process. In fact, the delays are being caused by the
credit card verifier service, but their current monitoring solution does not provide any insight about
the real problem, as it is limited to provide information about their computing infrastructure. Since
the long delays cannot be predicted or reproduced, the initial tests they executed on the third-party
services are not helpful in demonstraiting that the service provider is not fulfilling the agreed quality.
To discover what is causing the performance issues, we use Pascani as follows.

1. Application developers identify the context variables that allow modelling the performance
issue in the checkout process. In this case, measuring service latency is certainly enough for
detecting which of the services is causing the long delays in the checkout process.

2. Having into account the Target System’s components (i.e., the high-level elements composing
the OSR application), the application developers create a Pascani performance monitor with
logic to introduce a probe into each target service at runtime, and to gather the necessary
information to update the latency context variable.

3. Once the monitor specifications are finished, the application developers execute the Pascani
engine to generate the SCA monitor and its corresponding Amelia deployment specification.
Then, they also execute the Amelia engine for generating a Java program to deploy the
generated monitor.

4. In order to start monitoring the OSR application, the application developers execute the
Java program generated by the Amelia engine; this program compiles the generated source
code, transports the resulting artifacts to the computing infrastructure, and then executes the
monitoring components.

5. Since generated SCA monitors are introduced into the running infrastructure without stopping
the Target System, the monitoring logic is put in place immediatly. Every time a service is
executed (i.e., a custumer is finishing a purchase), the context variables are updated and their
new values are populated to the data stores.

6. While the monitoring infrastructure is gathering data from the Target System, and populating
the context variables’ values to the data stores, application developers create helpful visualiza-
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tions such as stacked bars or gantt charts to discover what service is causing the performance
issue.

By visualizing the latency associated with each target service, the application developers can now
discover the source of the unexpected delays. After having discovered which service is not performing
according to the service level agreements, the personnel from the local business can make decisions
about the service provider, such as triggering default clauses in agreements of service quality. In
a similar way, the service provider can analyze the issue, and discover if this is a problem in their
infrastructure, or it comes directly from the credit card company’s API.

4.2 Addressing Quality Concerns

This section explains how we address the quality concerns presented in Subsection 3.1.2.2.

Compatibility, Co-existence and Interoperability of Monitors and Probes

Table 3.1 details the effects of introducing new and already existing components into the running
infrastructure. This scenario can be broken down into two cases: the introduction of new monitors
and probes, and the deployment and re-deployment of monitors and probes. Regarding the first
case, introducing new elements into the Target System would generally entail a compatibility check
at design time; however, our envisioned dynamic monitoring infrastructure requires the introduction
of new elements at runtime. That is, we need to augment the service execution processing with
measurement code whilst service requests are happening. This is a proper scenario for using the
Interceptor design pattern, as long as the Target System’s middleware supports it (i.e., adding
interceptor elements at runtime). Examples of this are Intent components in SCA, and the use of
Aspect Oriented Programming in EJBs, through Java annotations or XML configuration files, and
OSGi, through the AspectJ extensions. Figure 4.2 shows the use of this design pattern to produce
measurement data, and to provide access to monitors through the Probe component. Regarding
the second case, it would require not only adding new interceptor components at runtime, but also
removing them. As communication between monitors and probes is bidirectional, this can be source
of errors because of broken bindings at runtime; thus, this places a new design concern regarding
static dependencies bindings. Static bindings require service provider and consumer to be bound
at system deployment, and cannot be replaced at runtime. In this case, monitors and probes need
to be decoupled, in a way that i) measurement data is exposed without knowing the components
consuming it, and ii) measurements are published without knowing the components making use
of them. These use cases match with the context of application of the Publish/Subscribe design
pattern.
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Figure 4.2: Interceptor Design Pattern applied to Probes components

Scalability of the Monitoring Infrastructure

Achieving scalability in a Dynamic Monitoring Infrastructure requires the ability to deploy monitors
in new computational resources, independently from the Target System’s components. It also
requires to handle the always increasing amount of measurement data, when supporting in-memory
storage, or when the Target System is under heavy load. This can be done by introducing the
Message Broker architectural style, which would decouple message senders and receivers (i.e., probes
and monitors), as discussed above, and would allow distributing the Monitoring Infrastructure’s
components across multiple computing resources. Furthermore, automatically moving components
across different computing resources would require the design and implementation of an autonomic
infrastructure, with special relevance in the planning function. The scope of this thesis, nonetheless,
is limited to the automation of the deployment mechanisms needed to realize the resulting re-
configuration plans of such infrastructure.

Composability of Monitors

Composable monitors refer to self-contained (modular) elements that can be reused effectively, with
the aim of increasing software quality, reducing maintenance costs, and improving productivity of
the development team. Such result is not easily achievable, the monitoring logic depends upon many
factors, including variables of interest, the components from which those variables are calculated,
the Target system’s architecture, among others. These dependencies make difficult to create config-
urable components that can be selected and assembled to build new monitor components. Although
this makes difficult to reuse monitors as a whole, we can provide them with desirable attributes to
promote composability on different fronts [34]:

• Sound architecture: good interface design (particularly for visible interfaces) and architecture
structure can considerably facilitate composition,

• Abstraction: providing an appropriate level of abstraction in the specification of the monitor-
ing logic can simplify the abstraction of related technical layers. This can be very beneficial for
composition of monitoring components, when there is suitable independence of the provided
monitoring concepts,

• Modularity: a monitoring infrastructure based on specific abstractions encapsulated into well-
defined entities promotes more modular monitor components. Modularity is very beneficial
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for composability if interfaces and specifications are well defined.

Controllability of Monitors

Controlling the execution of the Monitoring Infrastructure allows timely reacting to changes in the
Target System’s context. Critic levels of memory usage in the Target System, for instance, would
require to reduce the memory footprint of monitors and probes deployed in the same computing
resources. Other critic scenarios require modifying the periodicity of measurement metrics calcula-
tion, and even temporarily stopping all monitoring activity. These controllability requirements are
addressed by providing all elements of the Dynamic Monitoring Infrastructure with manageability
interfaces or methods to remove either portions or all of the sensed data (probes), and modify the
periodicity of metrics calculation (monitors). We also provide these and other elements of the in-
frastructure with an interface to pause and resume all monitoring activity, including propagation of
measurement data and changes in the context variables.

Traceability and Logging of Monitors

Reporting fine-grained levels of information about how is the infrastructure performing is essential
to discover sources of errors and undesired behaviors. Moreover, traces of the execution and detailed
data on transactions is useful to find anomalies’ causes. In the monitoring infrastructure, we have
designed an event-based logging system that propagates log and deployment events raised at each
component location. These events are also stored, allowing to reproduce the series of events in a
given time window. This also allows visualizing logs as a timeline of events, with the possibility of
filtering by logging levels.

4.3 Design Overview of the Dynamic Monitoring Infrastructure

Section 4.1 presents the global architectural design of our solution, composed not only of the
monitoring elements, but also of its corresponding deployment components. In this section, we
give a design overview of the monitoring infrastructure and its composing elements. This design
incorporates the design decisions we analyzed in Section 4.2 with regard to the infrastructure’s
quality considerations.

The most relevant elements composing our monitoring architecture are Monitors, Probes,
and Namespaces. The first two elements follow the considerations we have discussed in previous
chapters. Namespaces are in-memory stores for values associated with names; these elements allow
registering context variables at runtime, as well as getting and updating their values. Figure 4.3
depicts the basic behavior for each of these elements, and the manageability interfaces to control
their execution, as discussed in Section 4.2. These three elements are conceived as SCA components,
which not only standardizes but also simplifies the build, deployment, and management of our
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+cleanData(start : long, end : long, types : List<Event>)
+count(start : long, end : long, types : List<Event>) : Integer
+countAndClean(start : long, end : long, types : List<Event>) : Integer
+fetch(start : long, end : long, types : List<Event>) : List<Event>
+fetchAndClean(start : long, end : long, types : List<Event>) : List<Event>

<<Interface>>
Probe

+getVariable(name : String) : Serializable
+getVariable(name : String, tags : Map<String, String>) : Serializable
+setVariable(name : String, value : Serializable) : Serializable

<<Interface>>
Namespace

<<Abstract>>
Monitor

+updatePeriodicity(metric : String, expression : String)
+getPeriodicityExpression(metric : String) : String

<<Interface>>
EventsService

+pause()
+resume()
+isPaused() : boolean

<<Interface>>
Resumable<<implementation>>

<<implementation>>

Figure 4.3: Main elements composing the Monitoring Architecture

infrastructure.

The Probe interface in Figure 4.3 exposes a set of basic operations to fetch, count, and clean
measurements performed within a given time window. This allows monitors to pull measurements
(i.e., events) from probes, and perform calculations to update the context variables. As analyzed in
the subsection Compatibility, Co-existence and Interoperability of Monitors and Probes, monitors
and probes need to be decoupled using the Publish/Subscribe design pattern (cf. Figure 4.4). In
order to mediate between publishers and subscribers, we use a distributed message broker. In this
communication scheme, monitors subscribe to measurements of interest, and possibly to changes in
context variables. This data is published by probes and namespaces, respectively. Since we decided
to remove static bindings, pull communication is done through remote procedure calls (RPC) using
also the Publish/Subscribe design pattern.

Following the same communication scheme, we add persistence and log-ability to the monitoring
infrastructure. Each element within the infrastructure produces in-place logs that are published
through the message broker. Persistence is realized by the Data Store Mapper component, which
is subscribed to all changes in context variables, new log information, and new deployments of
monitors and namespaces.

Sections 4.4 and 4.5 present the design of Pascani and Amelia, the two domain-specific lan-
guages we introduced in the Global Architectural Design section.
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<<component>>
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<<component>>
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<<component>>
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<<component>>
Logger

PublishSubscribe

Figure 4.4: The Publish/Subscribe design pattern applied to elements of the Monitoring Infrastructure

4.4 Pascani: A DSL for Dynamic Performance Monitoring

Pascani is a component-based and statically-typed Domain Specific Language for specifying
dynamic performance monitors for component-based software systems. It is tightly integrated with
the Java type system, which allows the integration of already existing libraries into the language.
It also provides some of the Java control statements with a more flexible syntax, based on the
Xbase expression language [19].

From Pascani specifications, the language implementation generates the artifacts for the Dy-
namic Monitoring Infrastructure, including their deployment specifications, as explained in section
4.1. The generated artifacts are composed of elements from the Pascani runtime library and the
SCA library, which are presented in sections 5.1.1 and 5.1.2. To complete the automation of the
dynamic performance monitoring, the deployment specifications are executed by our second DSL,
Amelia, presented in Section 4.5

4.4.1 Language Concepts

The Pascani language comprises two main concepts: monitors and namespaces. These concepts
represent a textual abstraction to the Namespace and Monitor interfaces introduced in Figure 4.3.
The semantics associated with each of these concepts are based on the behavior defined by such
interfaces. Namespaces, as their name imply, are stores for values associated with names, identified
with a store name. Each name inside a namespace corresponds to a context variable. Monitors
are containers of events and event handlers, that specify the required monitoring logic to calculate
metrics. These two concepts have been designed to be used together through metrics, which are
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used to update the context variables defined in namespaces.

4.4.2 The Pascani Grammar Definition

The following syntax diagrams comprise a simplified version of the Pascani grammar definition.
Syntax diagrams, or railroad diagrams, are a visual way to represent context-free grammars. Each
diagram defines a non-terminal. A diagram describes possible paths between an entry point and
an end point, by going through other non-terminals and terminals. Terminals are represented with
round boxes, while non-terminals are represented with square boxes. The complete grammar is
presented in Appendix C. Grammar rules starting with an X are inherited from Xbase unless they
are explicitly re-defined within the grammar.

A valid file in Pascani has an optional definition of a package name, a Java import section and
a type (of compilation unit) declaration section. This means that empty files are valid specifications
that do not generate any artifact. A compilation unit is a translation unit, that is, a source file
containing the definition of either a namespace or a monitor. These are the two compilation units
in Pascani, that correspond to the Namespace and Monitor elements presented in figure 4.3.

MonitorSpecificationModel:

package Quali edName XImportSection TypeDeclaration

Each compilation unit has different syntax and semantics, and has been designed to be used
with each other; using namespaces inside monitors makes transparent getting and updating
context variables’ values, which eases the development by letting developers focus on the variables
instead of technical details. In the online retailing system example presented in subsection 4.1,
a namespace would contain context variables such as service latency or throughput. Pascani
releases application developers from maintaining and sharing the state of such variables. Moreover,
as the infrastructure may be distributed among several computing nodes, it also makes transparent
the communication protocols and technical details to get and update variables’ values.
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TypeDeclaration (Compilation Units):

MonitorDeclaration

NamespaceDeclaration

From a general perspective, monitors are made of an extension section, a name and a block of
expressions. The monitor’s qualified name (i.e., the concatenation of package and name separated
with a dot) must be unique in the project’s classpath.

MonitorDeclaration:

ExtensionDeclaration

monitor ID MonitorBlockExpression

An extension declaration defines a point where the monitor is extended beyond its own
expressions, being augmented with declarations from other types. An extension declaration is
either an event import, or a namespace import.

ExtensionDeclaration:

ImportEventDeclaration

ImportNamespaceDeclaration

One of the expressions inside monitors is the event declaration. When event declarations refer
to execution events, they can be reused inside other monitors to avoid the unnecessary introduction
of monitor probes into the Target System. This is done by explicitly importing events and treating
them as part of the monitor. The event import statement uses the qualified name of the declaring
monitor, and the name(s) of the event(s) that are being imported.
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ImportEventDeclaration:

from Quali edName import ID

,

Importing namespaces allows monitors to read and update variables from different contexts.
For instance, if a developer wants to model Service Level Indicators in Pascani, she can create a
namespace with the reference values, and another with the actual system values. This promotes
separation and grouping of variables according to the different monitoring concerns.

ImportNamespaceDeclaration:

using Quali edName

A namespace declaration contains the reserved word namespace, followed by a unique name and
a block of expressions.

NamespaceDeclaration:

namespace ID NamespaceBlockExpression

Listings 4.1 and 4.2 show the contents of two valid files written in Pascani, following the
grammar rules presented above.

1 package com.company

2

3 /*

4 * @date 2016/06/22

5 */

6 namespace SLI {

7 // Context variables

8 }

Listing 4.1: Minimal example of a namespace specification

1 package com.company

2
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3 import java.util.List

4 using com.company.SLI

5

6 /*

7 * @date 2016/06/22

8 */

9 monitor Throughput {

10 // Monitor expressions

11 }

Listing 4.2: Minimal example of a monitor specification

Sharing of Context Variables

In Pascani, Namespaces are hierarchical name stores holding context variables. A namespace is
composed of variable declarations and (optional) inner namespaces, which create the hierarchical
structure.

NamespaceBlockDeclaration:

{

VariableDeclaration

NamespaceDeclaration

}

A context variable can be defined as an immutable value or a variable, and specifying
its type is optional. In case no type is specified in the declaration, an initial value must be
assigned to the variable. The right part of the declaration is an expression, which means that not
only primitive types are allowed, but also any type by means of any valid expression in the language.

VariableDeclaration:

var

val
JvmTypeReference

ID

= XExpression

Variables support any type from the Java type system that is serializable, including custom
types, as namespaces allow importing Java classes. Types must be serializable because the
variables’ values are sent across the network to different components, such as monitors listening for
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changes in variable’s values.

In a monitor, a variable is accessed using its qualified name. In this case, the qualified name
of a variable is the concatenation of the hierarchical structure, separated with a dot between
every namespace, finishing with the variable name. For instance, the variable reference in listing
4.3 would be accessed with SLI.Performance.Throughput.reference. It is worth noting that
reference is an immutable value, therefore it cannot be modified but only read.

1 namespace SLI {

2 namespace Performance {

3 namespace Troughput {

4 val reference = 100 // transactions per minute

5 var Integer actual

6 }

7 }

8 }

Listing 4.3: Example of namespace declaration with inner namespaces and variable declarations

A variable’s qualified name is used as the variable’s name, and getting and updating its value
is done as with a variable in any general purpose language such as Java. Pascani also allows to
attach contextual information to a variable’s value; this is done by tagging the assignment using
the class TaggedValue directly, or by using the helper method tag. Listing 4.4 shows an example
on how to get and update a variable’s value, including tagged values.

1 // Contextual information

2 val Server0 = #{ "node" -> "grid0", "component" -> "Server" }

3 val Server1 = #{ "node" -> "grid1", "component" -> "Server" }

4

5 // Update the value

6 SLI.Performance.Throughput.actual = 88

7 // Update the value and attach contextual information

8 SLI.Performance.Throughput.actual = tag(92, Server0)

9 SLI.Performance.Throughput.actual = tag(85, Server1)

10

11 // Get the current value

12 println("Reference value: " + SLI.Performance.Throughput.reference)

13 val Server0T = SLI.Performance.Throughput.actual(Server0)

14 val Server1T = SLI.Performance.Throughput.actual(Server1)

Listing 4.4: Getting and updating variables
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Specification of Monitor Components

Monitor components are reactive by default. This is because all monitoring logic can only be
triggered by an event (i.e., there is no main method or entry point for a monitor to be invoked
directly), whether it is a periodical event, an execution event, or a variable change event. A monitor
specification can contain variable and event declarations, event handlers and configuration blocks.
The way events and handlers work together follows the Implicit Invocation design pattern [22]; this
means that events do not know its subscribed handlers neither their logic, and handlers can be
added and removed at any time.

MonitorBlockExpression:

{

VariableDeclaration

Con gBlockExpression

EventDeclaration

HandlerDeclaration

}

Event handlers receive two parameters, the first one is an event object and the second is a data
map object. Each type of event has an event class with information about the event being notified.
The first parameter allows accessing the event data from the handler’s logic. The second parameter
is optional, and contains information provided at the event listener subscription. It is useful when
a single event handler is handling several events.

HandlerDeclaration:

handler ID ( FullJvmFormalParameter

,

) XBlockExpression

Listing 4.5 shows an example of a simple event handler with two parameters declared.

1 handler throughputCalc(IntervalEvent e, Map<String, Object> data) {

2 // logic to calculate throughput

3 }
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Listing 4.5: Example of event handler declaration

Event declarations are specified with a name, the optional keyword periodically, indicating
whether or not the event is time-based, and an event emitter. In case the event is time-based, the
event emitter must resolve to a chronological expression that is based on the cron Unix scheduler,
with the difference that Pascani allows scheduling events in a resolution of seconds. On the
contrary case, the event may be a service execution event, or a variable change event.

EventDeclaration:

event ID raised

periodically

on EventEmitter

Event emitters are specified according to the event type. For execution events, the emitter, also
called the target, is an FPath expression [14] pointing to the SCA component, service, or reference
to intercept. When the target is a component, all of its services and references are intercepted.
For change events, the emitter is a variable from a namespace. In this case the emitter is specified
using the variable accessor.

For change events, there is an additional (optional) parameter called the event specifier.
The event specifier allows putting logical conditions on the new value to determine whether the
subscribed handlers should be notified or not. This is only applicable for numerical variables.

EventEmitter:

invoke

return

exception

change

of XExpression

EventSpeciଏer

XExpression

Listing 4.6 shows some examples on different event declarations.
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1 event e1 raised periodically on ‘*/5 * * * * ?‘ // every 5 seconds

2 event e2 raised on invoke of "$domain/scachild::Server/scaservice::print"

3 event e3 raised on change of SLI.Performance.Throughput.actual

4 event e4 raised on change of SLI.Performance.Throughput.actual below 80

5 event e5 raised on change of System.Performance.ResponseTime above 1.5 or below 0.5

6 event e6 raised on change of System.Performance.ResponseTime equal to 0.5

Listing 4.6: Example of event declarations

Variable declarations inside monitors are specified in the same way that context variables in
namespaces (cf. Subsection 4.4.2).

The last statement is the configuration block. It is intended to either i) subscribe event handlers
to events, ii) specify a URI when the event emitter is not deployed in the same monitor’s host or
specify a port different than the default one, or iii) indicate that a probe should be also introduced
in the specified event emitter. As configuration blocks are executed after monitor instantiation, it
is also useful for initialiazing the monitor variables that require more complex initialization than a
single expression.

EventEmitter:

con g {

XExpressionOrVarDeclaration

}

Listings 4.7 and 4.8 show two Pascani specifications for monitoring throughput and response
time of an SCA service. For sake of simplicity, these examples only include updating the context
variables, not reacting to changes on them. Reacting to contextual changes would require declaring
a change event on the variable of interest, and following the same subscription pattern described
in the aforementioned listings.

1 package com.company.monitoring

2

3 namespace SystemVars {

4 var throughput = 0d

5 var latency = 0d

6 }

Listing 4.7: Namespace specification for monitoring Throughput and Response time

1 package com.company.monitoring
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2

3 import java.util.Map

4 import org.pascani.dsl.lib.Probe

5 import org.pascani.dsl.lib.events.IntervalEvent

6 import org.pascani.dsl.lib.events.ReturnEvent

7

8 using com.company.monitoring.SystemVars

9

10 monitor Performance {

11

12 val searchTags = #{ "service" -> "search", "host" -> "grid0" }

13 val paymentTags = #{ "service" -> "payment", "host" -> "grid1" }

14 val server = "$domain/scachild::Server"

15

16 event minutely raised periodically on ‘0 * * * * ?‘

17 event search raised on return of server + "/scaservice::search"

18 event payment raised on return of server + "/scaservice::payment"

19

20 handler updateLatency(ReturnEvent e, Map<String, Object> data) {

21 SystemVars.latency = tag(e.value, data.mapValues[v|String.valueOf(v)])

22 }

23

24 handler updateTroughput(IntervalEvent e) {

25 val now = System.currentTimeMillis()

26 val searchCount = search.probe.countAndClean(-1, now)

27 val paymentCount = payment.probe.countAndClean(-1, now)

28 SystemVars.throughput = tag(searchCount, searchTags)

29 SystemVars.throughput = tag(paymentCount, paymentTags)

30 }

31

32 config {

33 #[ search, payment ].map[e | e.useProbe = true]

34 search.bindingUri = new URI("http://localhost:5000")

35 payment.bindingUri = new URI("http://localhost:5001")

36 search.subscribe(updateLatency, searchTags)

37 payment.subscribe(updateLatency, paymentTags)

38 minutely.subscribe(updateThroughput)

39 }

40 }

Listing 4.8: Monitor specification for monitoring Throughput and Response time

Listing 4.7 depicts the SystemVars namespace declaring two context variables: thoughput
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and latency, both of type double. This namespace is used by the Performance monitor pre-
sented in listing 4.8. Lines 3 to 6 of listing 4.8 contain Java imports used in the rest of the
specification. Line 8 declares that Latency makes use of SystemVars. Lines 16 to 18 declare
a time-based event, and two execution events on the search and payment services. Line 33
indicates that the execution events search and payment must introduce a probe into the corre-
sponding service; without this, there would not be way of pulling measurement data to calculate
service throughput. Lines 34 and 35 tell Pascani where is the component running, in order to in-
troduce the monitor probe. Lastly, lines 36 to 38 subscribe each handler to the corresponding event.

From monitor specifications, Pascani generates the elements composing the dynamic monitor-
ing infrastructure. It also generates the corresponding deployment specifications. These specifica-
tions are written in Amelia, and follow the syntax and semantics explained in the next section.

4.5 Amelia: A DSL for Dynamic Software Deployment

Amelia is a declarative and rule-based Domain Specific Language for automating the deployment
of distributed component-based software systems. It is inspired in tools such as Ant1 and Maven2,
although its syntax is based on the Make3 build automation tool, providing commands to facilitate
the execution of deployment tasks across multiple computing nodes. Its expressions and statements
are based on the Xbase expression language [14].

From Amelia specifications, the language implementation generates executable deployment ar-
tifacts that perform the tasks required to transfer, install, and configure the software components to
deploy on each of the specified processing nodes, using the SSH and SFTP protocols, and executing
the commands specified in Amelia rules.

4.5.1 Language Concepts

The Amelia language consists of two main elements: subsystems and deployments. A subsystem
contains a set of deployment operations for a self-contained system that belongs to a larger system.
A deployment contains flow control statements that execute the deployment a set of subsystems in
a particular way.

Subsystems are made of execution rules that are executed into specific computing nodes. Said
rules are depandable containers of commands, that guide the deployment of software components.

1
http://ant.apache.org/

2
https://maven.apache.org/

3
https://www.gnu.org/software/make/
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4.5.2 The Amelia Grammar Definition

In this subsection we present the Amelia grammar definition, introduce the main language
constructs and their associated semantics using syntax diagrams. Syntax diagrams, or railroad dia-
grams, are a visual way to represent context-free grammars. Each diagram defines a non-terminal.
A diagram describes possible paths between an entry point and an end point, by going through other
non-terminals and terminals. Terminals are represented with round boxes, while non-terminals are
represented with square boxes. The complete grammar is presented in Appendix D. Grammar rules
starting with an X are inherited from Xbase unless they are explicitly re-defined within the grammar.

A valid specification file in Amelia has a mandatory definition of a package name, and optional
definition of a Java import section and a type declaration. This means that files without a type
declaration are valid specifications that do not generate any artifact. A compilation unit is a
translation unit, that is, a source file that contains the definition of either a Subsystem or a
Deployment.

DeploymentSpecificationModel:

package Quali edName

XImportSection TypeDeclaration

Subsystems contain the definition of hosts (i.e., computing nodes) and execution rules; and
Deployments allow configuring deployment strategies from subsystem declarations.

TypeDeclaration (Compilation unit):

DeploymentDeclaration

SubsystemDeclaration

A deployment declaration provides the means to perform custom deployment behavior, such as
systematically repeating the same deployment a given number of times, or retrying on failure. This
type of declaration is composed of an optional extension section, a name, and a block of expressions.

41



DeploymentDeclaration:

ExtensionSection

deployment ID XBlockExpression

A subsystem is a composable and dependable unit of deployment intended to specify how to
deploy a set of components into different hosts. Its declaration contains an optional extension
section, a name, and a block of expressions.

SubsystemDeclaration:

ExtensionDeclaration

subsystem ID SubsystemBlockExpression

Extension declarations are extensions for either including a subsystem, or specifying an
execution dependency. On the one hand, including a subsystem into another subsystem means all
of the included subsystem’s parameters and execution rules are inserted and can be treated as part
of the subsystem. Name clashes are handled by making the colliding parameters accessible using its
qualified name. On the other hand, when a subsystem is included into a deployment declaration,
it is taken into account in the deployment strategy, allowing to instantiate the subsystem using
different values for its parameters.

ExtensionDeclaration:

DependDeclaration

IncludeDeclaration

In order to include a subsystem, the include declaration must specify the qualified name of the
included subsystem, that is, its package name concatenated with its name, with a dot separating
every word.
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IncludeDeclaration:

includes Quali edName

Subsystem dependencies are a way to establish execution order to ensure component depen-
dencies. Specifying a dependency requires explicitly declaring it with the qualified name of the
deployment or subsystem declaration.

DependDeclaration:

depends on Quali edName

Listings 4.9 and 4.10 show the contents of two valid files written in Amelia given the grammar
rules above.

1 package com.company

2

3 includes Common

4 depends on Test1

5

6 subsystem Test2 {

7 // Variables and on-host declarations

8 }

Listing 4.9: Minimal example of a subsystem specification

1 package com.company

2

3 includes Test1

4 includes Test2

5

6 deployment CustomStrategy {

7 // Deployment expressions

8 }

Listing 4.10: Minimal example of a deployment specification

The block of expressions composing a subsystem can contain variable declarations, on-host
blocks of expressions, and configuration blocks.
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SubsystemBlockExpression:

{

InternalSubsystemDeclaration

}

InternalSubsystemDeclaration:

VariableDeclaration

OnHostBlockExpression

Con gBlockExpression

In Amelia, a variable declaration can be either an immutable value, a variable, or a parameter.
The first two cases refer to regular private variables, while the third one has different semantics
associated. Parameters are included in the subsystem’s constructor, meaning that subsystems can
be instantiated with different arguments. When subsystems are included, the included parameters
are also passed to the subsystem’s constructor. Therefore, in an include chain, the leaf subsys-
tem’s constructor (i.e., the last subsystem) would contain all of the parameters included in all of
the subsystems in the include chain; the order is determined by the order in the include declarations.

VariableDeclaration:

var

val

param

JvmTypeReference

ID

= XExpression

On-host blocks of expressions group rules to be executed in the given host.
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ConfigBlockExpression:

con g {

XExpressionOrVarDeclaration

}

Deployment actions are specified using rules. Each rule is composed of a target, an optional
enumeration of dependencies (i.e., other targets), and a set of commands. When a rule depends
on other rules, it means its commands cannot be executed until all of the commands declared
on the other rules are executed. Listing 4.11 shows an example of rule declaration and dependencies.

RuleDeclaration:

ID : Quali edName

,

;

XExpression

1 init:

2 // commands

3 server: init;

4 // commands

5 client: init, server;

6 // commands

Listing 4.11: Example of declaration of execution rules

Amelia Commands

In order to facilitate the specification of deployment tasks, Amelia provides a set of commands
with automatic error checking during compilation and execution, and recognition of successful and
erroneous states. The provided commands allow to i) change the working directory, ii) compile a
FraSCAti component, iii) run a compiled component, iv) transfer files or directories to a remote
processing node, v) evaluate FScript expressions on a given FraSCAti runtime, and vi) execute
Unix-like commands.

In addition to this, Amelia allows configuring any predefined value for each command, in order
to modify the command’s behavior. Adding ... to the end of a command declaration would make
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the command’s builder accessible, which allows to modify its internal values. Listed below are the
Amelia commands:

The cd command requires only the new working directory, which must resolve to a string
expression.

Cd:

cd XExpression

...

The compile command is composed of string expressions representing, from left to right, the
source code directory, the output file, and optionally the classpath.

Compile:

compile XExpression XExpression

-classpath XExpression ...

The run command is composed of an optional integer expression, representing the port in
which the FraSCAti FScript console is exposed, a string representing the component (i.e.,
the .composite file), and the classpath. When the component is run in client mode, additional
parameters must be specified, including the sevice name, method name, and optionally a list of
arguments, all of them being string expressions.

Run:

run

-r XExpression

XExpression -libpath XExpression

-s XExpression -m XExpression

-p XExpression

...
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The transfer command requires the local and remote location of either a file or directory. If the
remote location does not exist, it will be created.

Transfer:

scp XExpression to XExpression

The eval command optionally expects the URI where the FraSCAti runtime is running, and
the FScript script to evaluate.

Eval:

on XExpression

eval XExpression

Any other Unix-valid command is given as a string.

Custom:

cmd XExpression

...

Listing 4.12 shows several examples of command specifications.

1 cd "/home/user/projects"

2 compile "src" "project" -classpath #[ "libs/lib1.jar", "lib/lib2.jar" ]

3 run -r 5000 "server" -libpath #[ "server.jar", "lib/common.jar" ]

4 run "client" -libpath #[ "client.jar", "lib/common.jar" ] -s "r" -m "run"

5 scp "~/project/files" to "/tmp/project/files"

6 on new URI("http://localhost:5000") eval "some-procedure()"

7 cmd "date >> date.txt"

Listing 4.12: Examples of command specifications
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The helloworld-rmi Example

Listings 4.13 and 4.14 show the deployment specification for the helloworld-rmi example that
comes with the FraSCAti distribution. This example comprises two SCA components: a server,
exposing a print service through RMI, and a client, consuming that service to print a message in
the standard output. Notice that $FRASCATI_HOME is not related to Amelia in any way, it is just
an environment variable that gets resolved during the SSH session.

The WarmingUp deployment specification (cf. line 8 of Listing 4.14 combines two common
strategies when deploying systems: executing the system several times in order to prepare the
environment to execute performance tests, and retrying the deployment if a failure is identified.
The first strategy is specified by means of the start method and the for statement in line 14.
The start method can be invoked with two parameters, the first one indicates whether or not the
executed components must be stopped after deployment, and the second one indicates whether or
not a shutdown must be performed. Turning off the deployment shutdown if useful when the user
wants to observe the SSH session’s output (i.e., the standard output of the executed components).
The second strategy is realized by means of the RetryableDeployment utility, which re-executes
the given lambda function the number of times indicated by the second parameter. In this case,
as noted in line 16, the deployment would be executed one time, and depending on its result,
successful or not, the utility would try again two more times.

By default, subsystems are initialized using an empty constructor; in case there are uninitialized
parameters, an instance of the subsystem must be provided to avoid errors associated with
invocations on null objects. Line 12 shows how to set a subsystem’s instance using a different
constructor. This can also be used to provide different subsystem instances per deployment; in
this case, moving the set invocation inside the for statement would allow to deploy the system
into a different host in each iteration, assuming a different host object is passed to the subsystem’s
constructor.

1 package com.company

2

3 import org.amelia.dsl.lib.descriptors.Host

4

5 subsystem Helloworld {

6

7 param Host host = new Host("localhost", 21, 22, "username", "password")

8

9 on host {

10 compilation:
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11 cd "$FRASCATI_HOME/examples/helloworld-rmi/"

12 compile "server/src" "s"

13 compile "client/src" "c"

14

15 execution: compilation;

16 run "helloworld-rmi-server" -libpath "s.jar"

17 run "helloworld-rmi-client" -libpath "c.jar" -s "r" -m "run"

18 }

19

20 }

Listing 4.13: Subsystem specification for the helloworld-rmi example

1 package com.company

2

3 import org.amelia.dsl.lib.util.RetryableDeployment

4 import org.amelia.dsl.lib.descriptors.Host

5

6 includes com.company.Helloworld

7

8 deployment WarmingUp {

9

10 val helper = new RetryableDeployment()

11 val remote = new Host("192.168.99.100", 25632, 41256, "username", "password")

12 set(new Helloworld(remote))

13

14 for (i : 1..10) {

15 helper.deploy([

16 start(true)

17 ], 3)

18 }

19

20 }

Listing 4.14: Deployment specification for the helloworld-rmi example
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Chapter 5

Implementation

Pascani and Amelia were developed using the Java programming language, and the Xtext
framework. Xtext is a language engineering framework that assists developers in the generation
of language implementations, including parser, linker, type checker, and compiler, as well as
edition support for well known IDEs such as Eclipse and IntelliJ, from a grammar definition. The
complete grammar definitions of Pascani and Amelia are presented in Apendix C and Apendix
D, respectively. To support the functionalities of each language, we developed a runtime library
abstracting common elements used by all applications generated by the compiler. This allows each
compiler to reduce the amount of lines of code generated and modularize the implementation in a
way that new elements can be created by combining the existing ones. In the case of Pascani,
there is an additional library containing resources and elements supporting all SCA-related concepts.

The current implementation of both languages has been customized for the Eclipse IDE to
offer syntax-driven edition, static error checking, code refactoring, and code generation. To install
Pascani or Amelia, it is enough to add the corresponding update site1 and follow the installation
instructions.

5.1 Pascani

The implementation code for the Pascani DSL comprises 11.028 SLOC (without counting
generated source code) distributed along the projects listed in Table 5.2. This section presents
an overview of the most relevant projects, including the implementation details of the language
syntax and semantics for realizing the translation model used to implement the compiler, and the
supporting libraries.

The language semantics are written using the facilities provided by Xtext, that is, checking
methods that are invoked once the model has been parsed. As an example, listing 5.1 depicts

1http://unicesi.github.io/pascani/releases and http://unicesi.github.io/amelia/releases
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Project Description SLOC
Eclipse Features

org.pascani.dsl.feature Contains the definition of the plug-in projects
composing the Pascani DSL.

785

org.pascani.dsl.build.feature The Pascani update site. 7
Eclipse Plug-ins

org.pascani.dsl This project contains the classes that belongs
to the language core library. It contains the
Pascani compiler, code generator, JVM model,
scope semantics, type system and semantic val-
idation.

2257

org.pascani.dsl.ide Contains the classes related to the Eclipse IDE
(none, at the moment).

21

org.pascani.dsl.ui Contains the plug-in definitions and correspond-
ing Java implementation regarding the Eclipse
user interface. It contains classes that imple-
ments or configures the IDE content assist, high-
lighting rules, editor, labeling, outline, and quick
fix.

677

org.pascani.dsl.lib.osgi Wrappers the Pascani runtime libraries into an
OSGi bundle.

13

Maven Projects
org.pascani.dsl.lib Contains all of the classes supporting the compo-

nents of the Dynamic Monitoring Infrastructure
that are generated by the compiler.

2666

org.pascani.dsl.lib.compiler Contains utility classes used by the Pascani
compiler.

987

org.pascani.dsl.lib.sca Contains all of the classes and resources support-
ing the runtime activity related to the SCA do-
main.

1887

org.pascani.dsl.dbmapper Contains the classes that map monitoring events
into plain data that can be persisted in a
database.

1128

org.pascani.dsl.target Contains the Eclipse target definition. 15
org.pascani.tycho.parent Parent pom that configures the build life-cycle

of the plug-in and maven projects.
239

Web Projects
org.pascani.dsl.web Contains classes and resources to publish a

web editor using the Pascani compiler and the
Eclipse UI plug-ins as services.

346

Table 5.2: Java projects composing the implementation of Pascani
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a semantic rule for finding invalid parameter types in event handlers. The semantic validation
performed in this method is as follows: event handlers cannot have more than two parameters, and
their type must be Event, and Map with type parameters String and Object, respectively.

1 @Check

2 def checkHandlerParameters(Handler handler) {

3 if (handler.params.size > 2) {

4 error("Event handlers cannot have more than two parameters",

PascaniPackage.Literals.HANDLER__PARAMS)

5 }

6

7 if (handler.params.get(0).actualType.getSuperType(org.pascani.dsl.lib.Event) ==

null) {

8 error('''TheÂńIF handler.params.size > 1 firstÂńENDIF parameter must be subclass

of Event''', PascaniPackage.Literals.HANDLER__NAME, INVALID_PARAMETER_TYPE)

9 }

10

11 if (handler.params.size > 1) {

12 val actualType = handler.params.get(1).actualType.getSuperType(Map)

13 val showError = actualType == null

14 || actualType.typeArguments.size != 2

15 || !actualType.typeArguments.get(0).identifier.equals(String.canonicalName)

16 || !actualType.typeArguments.get(1).identifier.equals(Object.canonicalName)

17 if (showError)

18 error('''The second parameter must be of type Map<String, Object>''',

PascaniPackage.Literals.HANDLER__NAME, INVALID_PARAMETER_TYPE)

19 }

20 }

Listing 5.1: Semantic rule for finding invalid parameters in Event Handlers (written in the Xtend

programming language)

5.1.1 The Pascani Runtime Library

The Pascani runtime library contains all of the classes supporting the components of the Dynamic
Monitoring Infrastructure that are generated by the compiler. These classes are organized into
seven packages. Figure 5.1 depicts a simplified class diagram containing all of the classes inside
each package. We describe the contents of each package as follows:

1. org.pascani.dsl.lib
Contains the classes derived from the elements of the Dynamic Monitoring Infrastructure in its
basic form (i.e., interfaces or abstract classes).
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2. org.pascani.dsl.lib.events
Contains the event types supported by the infrastructure; that is, all subtypes of Event. How-
ever, the language supports only time-based events (i.e., IntervalEvent), variable change events
(i.e., ChangeEvent), and execution events (i.e., InvokeEvent, ReturnEvent, TimeLapseEvent, and
ExceptionEvent).

3. org.pascani.dsl.lib.infrastructure
Contains the classes realizing the monitoring infrastructure, such as implementations of Namespace
and Probe, and the basic definitions of the element participating in the communication mechanisms
(e.g., Consumer, Producer, RPC server and client).

4. org.pascani.dsl.lib.infrastructure.rabbitmq
Contains implementations of the elements participating in the communication mechanisms. For
implementing the Message Broker component presented in Section 4.3, and the RPC server/clients
scheme, we decided to use RabbitMQ2.

5. org.pascani.dsl.lib.util
Contains both utility classes used by other classes, and classes to work with sets of events.

6. org.pascani.dsl.lib.util.events
Contains classes to realize handlers, events, and event subscriptions.

7. org.pascani.dsl.lib.util.log4j
Contains utility classes for appending logs to the infrastructure.

5.1.2 The Pascani SCA Library

The Pascani SCA library contains all of the classes and resources supporting the runtime activity
related to the SCA domain. The elements composing this library are: i) a set of interceptors
configured to produce the various types of execution events supported by the language, ii) FScript
procedures to add and remove monitor probes at runtime, and iii) facilities to ease the introspection
of FraSCAti applications.

Figure 5.2 depicts a simplified class diagram of the Pascani SCA library. Classes within this
library are organized into the following packages:

1. org.pascani.dsl.lib.sca
Contains utility classes to introspect FraSCAti applications and manipulate monitor probes at
runtime.

2https://www.rabbitmq.com/
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Figure 5.1: Simplified Class Diagram of the Pascani Runtime Library
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Figure 5.2: Simplified Class Diagram of the Pascani SCA Library

2. org.pascani.dsl.lib.sca.explorer
Contains UI extensions to the FraSCAti Explorer that allows managing monitors’s state and their
events.

3. org.pascani.dsl.lib.sca.intents
Contains the implementation of service interceptors according to the execution events supported by
the language.

4. org.pascani.dsl.lib.sca.probes
Contains the implementation of the monitor probes configured to handle the execution events sup-
ported by the language.

5.1.3 The Pascani Translation Model

The Pascani compiler translates Namespace and Monitor specifications into SCA components,
with a Java implementation. The generated Java classes use the elements from the runtime and
SCA libraries, which considerably reduces the amount of lines of code generated. The following sub-
sections detail the mapping between elements from Pascani specifications and their corresponding
Java class elements.
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Namespace Declarations

From a namespace specification, the compiler generates one composite file (i.e., an SCA component
descriptor) and two Java classes: a namespace implementation, which is also the implementation
of the generated SCA component, and a namespace proxy. The first one is a realization of the
Namespace interface we proposed in Section 4.3, with all of the namespace’s variables registered.
The second one is a proxy class mediating between client elements and the namespace imple-
mentation. For instance, when a monitor reads a context variable’s value, the request passes
through the proxy. Then it creates an RPC request and send it to the namespace implemen-
tation. This then answers the RPC request, and the proxy returns the variable value to the monitor.

Figures 5.3 and 5.4 depict an abstract view of the mapping between namespaces and Java
classes elements. From a namespace specification, the compiler uses the package, name, import
section, and documentation for generating both the namespace implementation and proxy.

On the one hand, a generated namespace implementation is very simple, as it inherits from the
BasicNamespace class that already implements the behavior described in Section 4.3. Each of the
variables declared within the namespace, including the ones declared within internal namespaces,
is translated into a registration statement, that is, a method invocation.

Namespace Declaration

Variable Declarations

Package Declaration

Documentation

Package Declaration

Import Section Import Section

Java Class Declaration

Javadoc

Method Invocation (Register Statement)

Figure 5.3: Mapping between a Namespace definition (left) and its corresponding Java class elements (right)

On the other hand, a generated namespace proxy is a more complex yet simple class. Variable
declarations are translated into getter and setter methods, including variants for allowing read-
ing and updating values having into account contextual information. Each method forwards the
invocation to equivalent methods on the class NamespaceProxy. Internal namespace declarations
have the same treatment, with the difference that they are turned into private fields of the con-
tainer namespace. The generated class is a utility for simplifying the notation in the language
specification. As Pascani is based on the Xbase expression language, regular invocations like ob-

ject.method(parameter) can be re-written as an assignment. In this way, SLI.latency = 0.5
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is equivalent to SLI.latency(0.5). In the same manner, invocations with no parameters can be
written without parenthesis, such as SLI.latency. In summary, the generated namespace proxy
acts as a utility declaring the method hierarchy representing the namespace and variables hierarchy.

Namespace Declaration

Variable Declarations

Package Declaration

Documentation

Package Declaration

Import Section Import Section

Java Class Declaration

Javadoc

Getter Method

Setter Method (only writable vars)

Internal Namespace Declarations Private Field

Figure 5.4: Mapping between a Namespace definition (left) and its corresponding Java -Proxy- class ele-

ments (right)

Monitor Declarations

From a monitor declaration, the Pascani compiler generates a composite file (i.e., SCA component
descriptor) along with its corresponding Java implementation. As for namespace declarations,
the generated Java class uses the package, name, import section, and documentation as they are
declared in the specification file. Namespace uses and variable declarations are translated into static
private fields, making them accessible from the entire monitor implementation, including inner
classes. Event declarations are also translated into fields; their type can be either PeriodicEvent or
NonPeriodicEvent. In the latter case, an inner class is created since it requires an implementation.
From event handlers, the compiler generates both a private field and an inner class inheriting from
EventObserver. Lastly, configuration blocks are translated into instance methods that are invoked
sequentially according to its order of appearance in the monitor specification.
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Monitor Declaration

Event declarations

Package Declaration

Documentation

Package Declaration

Import Section Import Section

Java Class Declaration

Javadoc

Inner Java Class

Instance Method

Variable Declarations Private Field

Handler declarations

Con g Blocks

Namespace usings

Figure 5.5: Mapping between a Monitor definition (left) and its corresponding Java class elements (right)

5.1.4 Storage and Visualization of the Monitoring Data

The Dynamic Monitoring Infrastructure supports several technologies for persisting the context
variables, and for visualizing them as well. By default, Pascani supports storing data in InfluxDB3,
ElasticSearch4, RethinkDB5, FnordMetric 6, and CSV files. From these files, different open source
data visualization products such as Grafana7, FnordMetric, and Kibana4 can be used for visualizing
graphical representations of the monitoring data.

Figure 5.6 depicts the deployment diagram of the monitoring infrastructure generated by the
Pascani compiler. Monitor and namespace specifications, as well as the elements of the target
system, are compiled to jar files, that are deployed to a FraSCAti execution environment. Both
artifacts monitors and namespaces depend upon the Pascani runtime libraries, therefore they must
be deployed jointly. The datastore mapper component is not an SCA component, that is why it
only requires a Java execution environment. This component is subscribed to namespaces using the
RabbitMQ message broker.

3https://influxdata.com/
4https://www.elastic.co/
5https://www.rethinkdb.com/
6http://fnordmetric.io/
7http://grafana.org/
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<<deploy>>
<<deploy>>

<<manifest>><<manifest>>
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Figure 5.6: Deployment Diagram of the Dynamic Monitoring Infrastructure

5.2 Amelia

The implementation code for the Amelia DSL comprises 7,239 SLOC (without counting generated
source code), distributed along the projects listed in Table 5.4. This section presents an overview of
the most relevant projects, including the implementation details of the language syntax and seman-
tics for realizing the translation model used to implement the compiler, and the supporting libraries.

The language semantics are written using the facilities provided by Xtext, that is, checking
methods that are invoked once the model has been parsed. As an example, listing 5.2 depicts
a semantic rule for validating the host parameter type in on-host expressions. The semantic
validation performed in this method is as follows: if the actual (inferred) type of the expression is
not of type Host or an Iterable of Host objects, show an error.

1 @Check

2 def void checkHost(OnHostBlockExpression blockExpression) {

3 val type = blockExpression.hosts.actualType

4 val isOk = type.getSuperType(Host) != null || type.getSuperType(Iterable) != null
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Project Description SLOC
Eclipse Features

org.amelia.dsl.feature Contains the definition of the plug-in projects
composing the Amelia DSL.

782

org.amelia.dsl.build.feature The Amelia update site. 7
Eclipse Plug-ins

org.amelia.dsl This project contains the classes that belongs
to the language core library. It contains the
Amelia compiler, code generator, JVM model,
scope semantics, type system and semantic val-
idation.

1970

org.amelia.dsl.ide Contains the classes related to the Eclipse IDE
(none, at the moment).

21

org.amelia.dsl.ui Contains the plug-in definitions and correspond-
ing Java implementation regarding the Eclipse
user interface. It contains classes that imple-
ments or configures the IDE content assist, high-
lighting rules, editor, labeling, outline, and quick
fix.

603

org.amelia.dsl.lib.osgi Wrappers the Amelia runtime library into an
OSGi bundle.

13

Maven Projects
org.amelia.dsl.lib Contains all of the classes supporting SSH and

FTP session handling, execution scheduling and
dependencies management, as well as logging
and reporting functionalities.

3223

org.amelia.dsl.target Contains the Eclipse target definition. 15
org.amelia.tycho.parent Parent pom that configures the build life-cycle

of the plug-in and maven projects.
262

Web Projects
org.amelia.dsl.web Contains classes and resources to publish a

web editor using the Amelia compiler and the
Eclipse UI plug-ins as services.

343

Table 5.4: Java projects composing the implementation of Amelia
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5 val msg = '''The hosts parameter must be of type ÂńHost.simpleName or

Iterable<ÂńHost.simpleName>, Âńtype.simpleName was found instead'''

6 val showError = !isOk

7 || type.getSuperType(List).typeArguments.length == 0

8 ||

!type.getSuperType(Iterable).typeArguments.get(0).identifier.equals(Host.canonicalName)

9 if (showError) {

10 error(msg, AmeliaPackage.Literals.ON_HOST_BLOCK_EXPRESSION__HOSTS,

INVALID_PARAMETER_TYPE)

11 }

12 }

Listing 5.2: Semantic rule for validating the host parameter type in On-host expressions (written in

the Xtend programming language)

5.2.1 The Amelia Runtime Library

The Amelia runtime library is composed of classes implementing all of the concepts within the
language, such as subsystems, commands, and dependencies. The most relevant subcomponents
in this library are related to i) SSH and FTP session handling, ii) execution scheduling and
dependencies management, iii) commands, and iv) logging and reporting functionalities.

Figure 5.7 depicts a simplified class diagram of the Amelia runtime library. Classes within this
library are organized into the following packages:

1. org.amelia.dsl.lib
Contains the classes implementing SSH and FTP session handling, and task scheduling and execu-
tion.

2. org.amelia.dsl.lib.descriptors
Contains classes mostly used to describe commands, asset bundles, and hosts.

3. org.amelia.dsl.lib.util
Contains utility and logging classes.

5.2.2 The Amelia Translation Model

The Amelia compiler translates Subsystem and Deployment specifications into Java classes. These
classes are entirely supported by the runtime library, and no other classes are generated. This
means that the generated code has been reduced to the minimum, promoting reusability of the
library’s elements. The following subsections detail the mapping between elements from Amelia
specifications and Java classes.
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Figure 5.7: Simplified Class Diagram of the Amelia Runtime Library

Subsystem Specifications

Figure 5.8 depicts an abstract view of the mapping between elements from a subsystem specification
and its corresponding derived Java class. From a given subsystem, the compiler generates a Java
class using the subsystem’s package and name. This class imports the Java classes specified in the
subsystem’s import section, and the runtime library’s classes used in the rest of the generated code.
Despite the resulting Java application not being thought to be analyzed by a human developer,
the compiler generates readable code, including the available documentation in the Amelia’s
subsystem specification.

A subsystem inclusion is translated into a private field, whose type is of the included subsystem’s
derived class. This field is used for accessing the included parameters and execution rules. A
subsystem dependency, as opposite to a subsystem inclusion, is not used in the subsystem’s derived
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Subsystem Declaration

Variable Declarations

Package Declaration

Extension Declaration: Includes

Documentation

Package Declaration

Import Section Import Section

Java Class Declaration

Javadoc

Private Field

Instance Method

Extension Declaration: Dependencies

Execution Rules

On-host declarations

Getter Method

ConstructorParameters

Con guration Blocks

Figure 5.8: Mapping between the Subsystems definition and the generated Java class elements

class; dependencies are used only in deployments’ derived classes
An on-host declaration is not translated into a specific Java element, but used to configure

the commands inside of its execution rules; that is, for each command is given a host where it
should be executed. Execution rules are translated into private array fields. Each field is initialized
containing a set of CommandDescriptor instances, representing each command within the rule.

Inside subsystems there are two types of dependencies: sequential commands, and rule
dependencies. The first type of dependency is represented in Java by configuring command
n + 1 as a dependency of command n, where both commands are elements of the same execu-
tion rule. The second type of dependency is solved by configuring the last command of each
dependency rule as dependency of the first command of the dependent rule. For instance, in
listing 4.13, the first command of rule execution depends on the last command of rule compilation.

Variable declarations are translated into private fields. In case there are either subsystem
parameters declared or included, a constructor is added to the generated class including them as
parameters. A getter method is also created for each parameter.

Configuration blocks are limited to 1 per subsystem, as there is no reason to have more. If one is
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declared, it is translated to an instance method. During execution, it is executed when all variables
have been initialized and all commands have been configured.

Deployment Specifications

Figure 5.9 depicts an abstract view of the mapping between elements from a deployment specification
and its corresponding generated Java class. As for subsystems, the compiler generates a Java
class using the deployment’s package, name and import section. A subsystem include is used to
initialize a Subsystem instance using by default the subsystem’s empty constructor. It is also used
to establish subsystem dependencies when configuring the execution graph (i.e., a SubsystemGraph

instance). The subsystem’s body is translated to an instance method as it is, and is invoked after
the initialization of all subsystem instances.

Deployment Declaration

Package Declaration

Extension Declaration: Includes

Documentation

Package Declaration

Import Section Import Section

Java Class Declaration

Javadoc

Private Field

Instance MethodBlock of Expressions

Figure 5.9: Mapping between Deployments and Java classes’ elements
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Chapter 6

Evaluation

Our solution consists of two main elements: the design of an scalable architecture for dynamic
performance monitoring, and the design and implementation of Pascani and Amelia, two
domain-specific languages for generating composable, traceable, and controllable monitoring
components, and deploying them into a target system’s running infrastructure, respectively. In this
chapter we present a qualitative assessment of the effectiveness of Pascani and Amelia, based on
real users’ feedback. Included in the effectiveness evaluation, we also evaluated the applicability of
the proposed architecture in a real scenario.

In order to assess the effectiveness of Pascani and Amelia, we use FQAD, a framework for
qualitative assessment for DSLs proposed in [27]. FQAD refines a set of quality characteristics
from the ISO/IEC 25010:2011 standard in order to use them in the assessment of DSLs. These
characteristics are described as follows.

1. Functional suitability: the degree to which a DSL supports the development of solutions to
satisfy stated requirements of the application domain.

2. Usability: the degree to which the DSL can be used by certain users to accomplish certain
goals.

3. Reliability: the property of the language to help its users to produce reliable programs.

4. Maintainability: the degree to which the language promotes ease of program maintenance.

5. Productivity: the degree to which a language promotes programming productivity.

6. Extendability: the degree to which a language provides mechanisms for users to add new
features.

7. Compatibility: the degree to which a DSL is compatible with the domain and development
process.
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8. Expressiveness: the degree to which a problem solution (in the domain) can be mapped into
a program in the DSL naturally.

9. Reusability: the degree to which the language constructs can be used in other languages.

10. Integrability: the property of the language to be integrated with other languages used in the
development process.

Figure 6.1 depicts the components within the FQAD Assessment Model, in which: DSL success
is a group of interrelated characteristics in a DSL that collectively satisfies a requirement considered
relevant for the DSL; Goal statement is intended to describe the purpose of the assessment; DSL
characteristics are the characteristics described above, which are a set of unique attributes present
in a high-quality DSL; DSL sub-characteristics are used to describe quality measures relevant to
achieve the associated characteristic.

DSL Sub-
characteristics

DSL Success Goal statement

DSL characteristics Success levels

Sub-characteristics
Support Levels

Conforms

Has

Has

Apply to

Apply to

Figure 6.1: FQAD Assessment Model Components. Adapted from [27]

The DSL success assessment process consists of three steps: first, the evaluator assigns an
importance ranking to each of the selected DSL quality characteristics. This is done according to
the alignment of the characteristic with the assessment goal. Second, based on the feedback of the
language provided by users participating in the evaluation process, the evaluator determines the
support level for each characteristic. Finally, the results of the assessment are obtained according
to the rules defined in the FQAD assessment model.

In order to asses the effectiveness of Pascani and Amelia, we designed a set of exercises
to use each language in a controlled development environment, and a questionnaire for assessing
the experience. We apply the whole exercise with a set of evaluators in evaluation sessions called
workshops. These exercises are based on the Matrix-Chain Multiplication problem, a case study
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we developed in the context of this thesis, that is presented in the next section. We also used these
sessions to evaluate the applicability of the dynamic performance monitoring architecture.

6.1 Case Study: The Matrix-Chain Multiplication Problem

The Matrix-Chain Multiplication (MCM) problem is an optimization problem that consists
in finding the most efficient multiplication sequence to multiply a set of given matrices. Our
implementation of the MCM, provided to the workshop participants, splits the problem into three
different subproblems: the matrix-pair multiplication problem, the matrix-chain parenthesization
problem, which finds the optimal sequence of matrix-pair multiplications minimizing the number
of individual additions and multiplications, and the matrix-subchain multiplication scheduling
problem, which finds subsets of matrix multiplications that can be performed concurrently to
decrease the overall multiplication time [30]. In this way, by combining the different solutions
to these subproblems, it is possible to configure several different actual solutions to the whole
problem, which raises a problem of solution configuration. For instance, by combining the first and
second subproblems, one can obtain a solution able to multiply a set of given matrices reducing
the number of individual arithmetical operations. In the same sense, by combining the first and
third subproblems, the same solution mentioned above would be obtained, but this time reducing
multiplication time. And of course, by combining the three subproblems both operations and
overall processing time would be reduced. In practice, however, there can be computational
limitations and trade-offs that may make infeasible some of the possible solution configurations.

The following figure depicts the variability of the MCM configurations to build a concrete solu-
tion using a feature model [13].

[1..1]

Matrix-Chain Multiplicator

Strassen Hybrid

Block-reduce

Distributed Sequential Distributed Sequential

[1..1] [1..1]
Matrix-Pair Multiplicator Parenthesizer Scheduler

Feature Optional Mandatory Requires [1..1] AlternativeLegend:

Figure 6.2: Features Diagram of the MCM configurations

In this implementation of the MCM solution, we take advantage of distributed computational
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resources in order to reduce the execution time when multiplying a large number of considerably
big matrices. To this end, we developed two multiplication strategies, one based on the map-reduce
architecture, and a variation of it that significantly reduces network usage. At the end, local
multiplications are performed using the Strassen algorithm.

The following deployment diagrams depict the high-level elements composing each of the
multiplication strategies. For sake of simplicity, we omit the details of the scheduling and
parenthesizing subproblems. As there is only one artifact per strategy (i.e., one resulting artifact
of the compilation process), a note on each diagram specifies the node in which the components
are executed.

<<device>>
grid0

<<artifact>>
mcm-strassen.jar

<<component>>
Strassen

<<artifact>>
mcm-common.jar

<<component>>
Common

<<component>>
<<middleware>>

FraSCAri 1.4

<<deploy>>

<<manifest>>

<<depends>>

<<manifest>>

Figure 6.3: Deployment Diagram for the Monolithic Strassen Configuration Strategy

The monolithic Strassen configuration strategy considers only a multiplication component that
takes the sequence of matrices as it is, and multiplies them iteratively in one computing node. This
strategy leaves out the optimizations introduced by subproblems matrix-chain parenthesization and
matrix-subchain multiplication scheduling.
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Figure 6.4: Deployment Diagram for the BlockReduce Configuration Strategy

The BlockReduce consiguration strategy consists in splitting each matrix into fixed-size blocks
(i.e., sub-matrices) and multiply them as if they were one cell instead of a group of them. For
instance, having two squared matrices A and B, partitioned into 4 blocks each, the resulting matrix
C would be calculated using the same blocks partition strategy. C00 represents the first block of
C, and would be calculated by operating A and B such that C00 = A00 ⇤ B00 + A01 ⇤ B10 + A02 ⇤
B20 + A03 ⇤ B30. In this strategy, determining the block size is crucial to balance the amount of
data transmitted over the network and the size of the blocks to multiply, in order to reduce the
multiplication time. We performed several experiments and found that for matrices of approximately
3600x3600 elements, the block size with best execution times is 200.
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Figure 6.5: Deployment Diagram for the Hybrid Configuration Strategy

The Hybrid configuration strategy introduces an improvement in terms of network usage, with
respect to the BlockReduce configuration strategy. However, it is more demanding in terms of
processor and memory usage. In the strategy above, calculating a block in the resulting matrix
requires sending as many pairs of blocks as columns or rows of blocks are, while in this strategy it
only requires sending the whole column and row of blocks. Another advantage of this strategy is
that it also reduces the amount of processors necessary to multiply the blocks.
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Figure 6.6: Deployment Diagram for the N-Matrices Configuration Strategy

6.2 Application of the Assessment Model

Before starting the assessment process, we must select the quality characteristics in order to define
the Pascani and Amelia success factors. Given our initial set of requirements, the intended use for
each language, and the scope of this thesis, we do not consider as goal the following characteristics:
Maintainability, Extendability, Compatibility, and Integrability. This does not necessarily mean
that these characteristics have been completely ignored in the design of Pascani and Amelia,
instead, it means that for this evaluation they are not considered as key success factors. Therefore,
those characteristics are not shown in the results.

6.2.1 Step 1: Assignment of Importance Degree

Each DSL quality characteristic is given an importance degree to determine the expectations of
an evaluator from a DSL. Importance degrees are defined using an ordinal scale with the following
scale levels: mandatory, desirable, and nice to have. Table 6.1 depicts the mapping between the
importance degrees defined in FQAD and their required support level. An importance degree can
be accepted as fulfilled if the sub-characteristic support level matches with the one below in the
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aforementioned table.

Table 6.1: Mapping between Importance degree and its required Support level

Importance Degree Support Level Support Level Description
Nice to have No support Fails to recognize the sub-characteristic. The

sub-characteristic is not supported nor referred
to in the DSL.

Desirable Some support The sub-characteristic is supported but not sat-
isfactorily. It needs improvement.

Mandatory Strong support The DSL meets the sub-characteristic.
– Full support All aspects of the sub-characteristic are cov-

ered and the DSL provides beyond the sub-
characteristic requirements.

We define the importance degrees for the Pascani and Amelia quality characteristics as follows:
Functional suitability, Reliability, and Productivity are desirable, whereas Usability and Expressive-
ness are mandatory.

6.2.2 Step 2: Determination of Sub-characteristics Support Level

Each workshop questionnaire contains a set of statements regarding the sub-characteristics support
in the language. Workshop participants are asked in what extent they agree or disagree with each
statement, using the following cardinal scales: strongly agree, agree, neutral, disagree, and strongly
disagree. We leave out responses where the participant neither agree nor disagree with the statement
(i.e., neutral responses). In these cases, we consider that the participant either did not understand
the question, or lacks experience to evaluate the sub-characteristic under assessment. Table 6.2
shows the mapping between our evaluation questionnaire cardinal scales and sub-characteristic
support levels.

Table 6.2: Mapping between Questionnaire cardinal scales and Sub-characteristic support Levels

Questionnaire Cardinal Scale Support Level
Strongly agree Full support
Agree Strong support
Disagree Some support
Strongly disagree No support

Table 6.3 shows the Pascani and Amelia support level per quality sub-characteristic, according
to the responses of the workshop participants. Each sub-characteristic was given the support level
on which more developers agreed, that is, the one that appeared more in the questionnaire answers.
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In case of a tie, the lowest support level was selected.

Table 6.3: Sub-characteristics’ Support Level (SL) in Pascani & Amelia;

Quality Characteristic Sub-characteristic Pascani SL Amelia SL

Functional Suitability
Completeness Some Support Full support
Appropriateness Strong Support Full support

Usability

Comprehensibility Full support Strong support
Learnability Strong support Strong support
Likeability Strong support Full support
User perception Strong support Full support
Operability Strong support Strong support
Compactness Strong support Full support

Reliability
Model checking Strong support Strong support
Correctness Strong support Full support

Productivity
Development time Full support Full support
Amount of human resource Strong support Full support

Expressiveness

Mind to program mapping Strong support Full support
Uniqueness Strong support Strong support
Orthogonality Strong support Strong support
Correspondence to important
domain concepts

Strong support Strong support

Conflicting elements Full support Full support
Right abstraction level Strong support Full support

6.2.3 Step 3: Success Level Determination

Success levels dictaminate an overall DSL evaluation in terms of its quality achievement. According
to FQAD, for a DSL to fulfill a specific success level, it must satisfy all of the sub-characteristics of
the characteristics. FQAD defines the rules of success level determination as follows:

Incomplete DSL is incomplete in satisfying its intended purpose and it needs improvements.

Satisfactory DSL satisfies its intended purpose on average, yet it can be further improved.

Effective DSL satisfies its intended purpose.

Having into account the sub-characteristic support levels presented in Step 2, we state the
success level of both Pascani and Amelia as effective.
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Throughout the realization of the workshop exercises, the language users showed a significant
improvement in the specification times, as well as the time spent correcting errors during execution
trials. In the case of Amelia specifications, all the exercises improved at least 90% in deploy-
ment time when compared to manual deployments. Regarding Pascani, we cannot calculate the
improvement in development times given that we have no previous information about manual de-
velopments. Furthermore, a fair comparison of development times should consider two applications
fulfilling the same set of requirements, which makes it more difficult to accomplish. This improve-
ment in developing specifications reflects the effectiveness of both languages in the evaluated quality
characteristics.
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Chapter 7

Conclusions and Future Work

Continuous service delivery and accomplishment of agreed levels of fulfillment in service per-
formance requires insightful information on the current system state, regarding not only the
hardware infrastructure but also its constituting software components. Moreover, advances in
autonomic computing for strengthening service responsiveness and resilience have promoted the
design of re-configurable systems able to modify its structure and behavior at runtime. Then, to
actually ensure the continuous satisfaction of performance factors in these systems, monitoring
infrastructures must be able of (i) dynamically updating its monitoring strategies as the system’s
requirements or the environment evolves; and (ii) realizing the deployment and integration of
monitoring components at runtime. Moreover, in providing the system itself with self-awareness
mechanisms (i.e., mechanisms enabling the system with awareness regarding its own behavior),
such infrastructure must also (iii) provide the means to generate composable, traceable, and
controllable monitoring capabilities.

In order to provide a solution satisfying the challenges presented above, we analyze and
break down the stated needs into functional requirements and quality considerations. These
requirements are first classified by component, in Monitors and Probes, and then by stage of the
monitoring process in Data acquisition, Data aggregation and filtering, Data persistence, and
Data visualization. The quality concerns identified are related to the dynamic deployment and
re-deployment of the infrastructure’s elements, their composability and controllability, and the
scalability of the infrastructure.

This thesis propose a component-based dynamic monitoring architecture to overcome the chal-
lenges identified, and meet the stated requirements. In order to abstract operative and low-level
technical details, we created Pascani and Amelia, two domain-specific languages for generat-
ing the envisioned monitoring components, and deploying and re-deploying them into the running
infrastructure, respectively. Our solution constitutes an effort to advance in the development of self-
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awareness mechanisms, and furthermore, in the realization of DYNAMICO’s monitoring feedback
loop.

7.1 Technical Limitations

In the development of our solution, we have encountered technological limitations that did not
allow us to provide certain functionalities such as measuring network communication times with
Pascani, and binding RMI services at runtime with Amelia. Moreover, we have made some
decisions about the scope of our proof-of-concept implementation that have left out some functional
requirements for future development, such as state recovery after re-deployment, and configuration
of development environments with Pascani and Amelia, respectively. This section provides the
details of a selected list of these limitations.

Configuration of Development Environments

The Amelia language has been designed to deploy distributed component-based systems. De-
ploying such systems includes activities such as source code compilation, execution and binding
configuration. However, deployment also involves the activities related to the configuration of ex-
ecution environments, such as installing an operating system, configuring the hardware properties
of the machines, configuring a firewall, among many other activities. Advances in management of
cloud infrastructures have promoted the virtualization of many of these tasks, and today there are
many tools and languages specialized in the creation and configuration of development/production
environments. Amelia does not directly support these type of tasks, however, as the Amelia
runtime is able to comunicate with remote computing nodes using SSH sessions, it could certainly
execute the necessary commands to trigger a desired set of environment configuration tasks.

Network Communication Probes

All the runtime interception operations in the dynamic monitoring infrastructure are supported
by the FraSCAti middleware. Although FraSCAti has been designed for introspecting SCA
applications, measuring network communication time requires not only to intercept one component,
but two sides of communication, within the context of a single service invocation. For measuring the
time it takes to send data over the network, one have to know the invocation’s start and end time;
the problem remains in that those times are measured at different locations, at the service consumer
and service provider components. The problem here is that invocations are not identifiable, they
do not have a unique key to which both times can be attached. This is a common issue when
measuring network communication times. A good approach used by RPC servers is the stubs and
skeletons strategy. This strategy considers the standard generation of two components, an stub
and an skeleton, for sending a transaction ID and the invocation start time, along with the original
request from the stub to the skeleton. Then, the skeleton removes the additional information, and
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forwards the request to the service provider. given this thesis’ scope, the current version of Pascani
lacks of an implementation of the network communication probe.

Service Binding at Runtime

Since Amelia was implemented to deploy SCA components generated by Pascani, FraSCAti is
the Amelia’s target middleware platform. This limits Amelia in the kind of bindings that can be
performed at runtime to web and REST services, leaving out RMI bindings.

State Recovering on Re-deployment

The current implementation of Pascani does not includes a mechanism to recover the state after
a re-deployment is performed. Since monitor elements are event-driven, this does not entail serious
consequences in terms of losing the current state. For namespaces, however, this is a relevant issue,
as monitors would continue working with the default values of the context variables, instead of the
ones that reflect the system state. Recovering a namespace’s state after a re-deployment requires
to initialize its variables from the values stored in the database; this is a complex process, given
that there must exist an standard mapping mechanism to marshall and unmarshall any data type.
Implementing such a mechanism would have to solve many of the problems of object-relational
mapping (ORM) technologies. Pascani currently supports only the storage of primitive data types
(i.e., the marshall process), but with little effort the unmarshalling for such data types can be
supported.

7.2 Future Work

Evolution of Pascani and Amelia

According to our evaluation, both Pascani and Amelia provide an appropriate level of domain
abstraction, and improve development productivity. However, we still need to perform tests re-
garding performance monitoring and system deployment in different types of software applications.
Although we designed both languages concerned with comprising as much concepts as possible from
each language domain, different kinds of requirements may arise. Consequently, we may need to
adapt and evolve the syntax and semantics of each language.

Development of Self-awareness Mechanisms

The architecture we propose in this thesis allows the manual specification of monitoring specifica-
tions, and the automated generation and deployment of monitoring components. In order to move
the state of the art forward, and reach always-relevant self-awareness mechanisms, we need to aug-
ment our solution with autonomic capabilities to continuously evolve the monitoring infrastructure.
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One way to this is by designing and implementing the DYNAMICO’s monitoring feedback loop
based on our architecture for dynamic performance monitoring.

Towards Supporting Automatic Generation of Pascani and Amelia Specifications

One of our ultimate objectives in developing dynamic monitoring mechanisms is to provide a base
line to, gradually, enable the system itself for generating the monitoring components that allow
the infrastructure to remain pertinent. However, the syntax and semantics of Pascani are still
in a low-level abstraction that makes it difficult for the system to assemble new specifications
in order to fulfill emerging monitoring requirements. We consider that an adequate solution to
this problem is to abstract Pascani specifications into high-level policies. These policies would
considerably minimize monitoring specifications, while hiding irrelevant technical details for the
system. For instance, to observe latency in a given service, the system would have to declare an
event with the corresponding target service, create an event handler with the logic to update the
latency variable, and a configuration block for subscribing the handler to the execution event.
Additionally the system would have to declare the monitor’s package and name, and import the
required Java classes. This becomes complex when there are several context variables and services
involved in the monitoring requirement, and even more complex when monitoring requirements are
dependent among them. Such cases would probably require to design a derivation strategy based
on composable templates and fragments. Nonetheless, abstracting those monitoring requirements
into policies with clear scope would make it easier to derive Pascani specifications, and also to
represent monitoring requirements/strategies in knowledge sources (i.e., Knowledge element of the
MAPE-K reference model).

These considerations also apply to the Amelia language. Deploying a component requires the
declaration of on-host expressions, execution rules, and commands. In this case policies would help
to reduce the amount of code needed to express a requirement, however, that might not be enough.
The deployment of a single component expects to be given the source code directory, artifact name,
dependencies, libraries, and commands to compile, possibly configure, and execute it. We consider
that the convention-over-configuration principle is a good complement to leverage the system for
understanding intricate deployment strategies in a simpler way.
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Appendix A

Workshop for Evaluating the Effectiveness of

Pascani

To evaluate the effectiveness of the Pascani DSL, our language that assists application developers
in the development of dynamic performance monitors for component-based software systems, we
designed a set of exercises to use Pascani, and a questionnaire for assessing the experience of using
the language. We call this whole exercise a workshop. The idea for the workshop is to be applied
by a group of developers, who will evaluate the effectiveness of the language. In this section, we
explain the workshop evaluation design, including the case study of application, a short introduc-
tion of the language, and then the set of exercises through which the evaluation process is performed.

A.1 Case Study: The Matrix-Chain Multiplication Problem

The Matrix-Chain Multiplication (MCM) problem is an optimization problem that consists
in finding the most efficient multiplication sequence to multiply a set of given matrices. Our
implementation of the MCM, provided to the workshop participants, splits the problem into three
different subproblems: the matrix-pair multiplication problem, the matrix-chain parenthesization
problem, which finds the optimal sequence of matrix-pair multiplications minimizing the number
of individual additions and multiplications, and the matrix-subchain multiplication scheduling
problem, which finds subsets of matrix multiplications that can be performed concurrently to
decrease the overall multiplication time [30]. In this way, by combining the different solutions
to these subproblems, it is possible to configure several different actual solutions to the whole
problem, which raises a problem of solution configuration. For instance, by combining the first
and second subproblems, one can obtain a solution able to multiply a set of given matrices
reducing the number of individual arithmetical operations. In the same sense, by combining the
first and third subproblems, one would obtain the same solution aforementioned, but this time
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reducing multiplication time. And of course, by combining the three subproblems one would reduce
both operations and overall processing time. In practice, however, there can be computational
limitations and trade-offs that may make infeasible some of the possible solution configurations.

The following figure, in UML notation, depicts the variability of the MCM configurations to
build a concrete solution using a feature model [13].
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In this implementation of the MCM solution, we take advantage of distributed computational
resources in order to reduce the execution time when multiplying a large number of considerably
big matrices. To this end, we developed two multiplication strategies, one based on the map-reduce
architecture, and a variation of it that significantly reduces network usage. At the end, local
multiplications are performed using the Strassen algorithm.

The following deployment diagrams depict the high-level elements composing each of the
multiplication strategies. For sake of simplicity, we omit the details of the scheduling and
parenthesizing subproblems. As there is only one artifact per strategy (i.e., one resulting artifact
of the compilation process), a note on each diagram specifies the node in which the components
are executed.
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Figure A.1: Deployment Diagram for the Monolithic Strassen Configuration Strategy

The monolithic Strassen configuration strategy considers only a multiplication component that
takes the sequence of matrices as it is, and multiplies them iteratively in one computing node. This
strategy leaves out the optimizations introduced by subproblems matrix-chain parenthesization and
matrix-subchain multiplication scheduling.
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Figure A.2: Deployment Diagram for the BlockReduce Configuration Strategy

The BlockReduce consiguration strategy consists in splitting each matrix into fixed-size blocks
(i.e., sub-matrices) and multiply them as if they were one cell instead of a group of them. For
instance, having two squared matrices A and B, partitioned into 4 blocks each, the resulting matrix
C would be calculated using the same blocks partition strategy. C00 represents the first block
of C, and would be calculated by operating A and B such that C00 = A00 ⇤ B00 + A01 ⇤ B10 +

A02 ⇤ B20 + A03 ⇤ B30. In this strategy, the block size is crucial to find the threshold between the
amount of data transmitted over the network and the size of the blocks to multiply, in order to
reduce the multiplication time. We performed several experiments and found that for matrices of
approximately 3600x3600 elements, the block size with best execution times is 200.
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Figure A.3: Deployment Diagram for the Hybrid Configuration Strategy

The Hybrid configuration strategy introduces an improvement, in terms of network usage, to
the BlockReduce configuration strategy. However, it is more demanding in terms of processor and
memory usage. In the strategy above, calculating a block in the resulting matrix requires sending as
many pairs of blocks as columns or rows of blocks are, while in this strategy it only requires sending
the whole column and row of blocks. Another advantage of this strategy is that it also reduces the
amount of processors necessary to multiply the blocks.
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Figure A.4: Deployment Diagram for the N-Matrices Configuration Strategy

A.2 The Pascani Language: Specification Examples

Pascani allows specifying two types of constructs: Namespaces and Monitors. A namespace is
hierarchical structure that allows defining, reading and updating context variables. A monitor
is an entity to continuously observe and check the state of the system or a particular subsystem
regarding a set of performance factors. Along this workshop you will be given an overview of the
language syntax and its associated semantics.

Listings A.1 and A.2 are namespaces that will be used in the specification example, and in the
practical exercises as well. The first one contains the reference values for the performance level
indicators; and the second one contains the context variables representing the actual system state.

1 package co.edu.icesi.driso.matrices

2 import org.quartz.CronExpression

3 /*

4 * Service Level Indicators & other reference variables

5 */
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6 namespace SLI {

7 /*

8 * Expected throughput in a period of 10 seconds

9 */

10 val Integer throughput = 10

11

12 /*

13 * Chronological expression representing the throughput period

14 */

15 val CronExpression throughputPeriod = ‘*/10 * * * * ?‘

16

17 /*

18 * Expected latency for all service executions

19 */

20 val Integer latency = 3000

21 }

Listing A.1: Reference values

1 package co.edu.icesi.driso.matrices

2 /*

3 * Monitoring variables representing the actual system state

4 */

5 namespace State {

6 /*

7 * Represents the number of multiplications done in the

8 * latest throughput period

9 */

10 var Integer throughput = 0

11

12 /*

13 * Represents the service latency (for all executions)

14 */

15 var Long latency = 0L

16 }

Listing A.2: Context variables

The following examples describe two monitoring requirements and their corresponding solutions
in Pascani.
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A.2.1 Requirement 1 (Example)

Measure the execution time in all invocations performed to the multiplication service of the
Strassen component strategy, and update the latency variable adding the contextual information
strategy, host, and component.

In Pascani this would require to declare an invocation or return event whose target is the
Strassen component, and every time the event is triggered, the variable is updated. The type of
event to declare here is important because if an exception is thrown while a request is being served,
the execution time should not be measured.

1 package co.edu.icesi.driso.matrices.strassen

2

3 import java.net.URI

4 import org.pascani.dsl.lib.events.ReturnEvent

5 import static org.pascani.dsl.lib.sca.FluentFPath.$domain

6

7 using co.edu.icesi.driso.matrices.State

8

9 monitor Latency {

10 val target = $domain.child("Strassen").child("matrix").service("multiplication")

11

12 event e raised on return of target

13

14 handler onReturn(ReturnEvent e) {

15 val tags = #{

16 "strategy" -> "strassen",

17 "host" -> "grid0",

18 "component" -> "Strassen"

19 }

20 State.latency = tag(e.value, tags)

21 }

22

23 config {

24 e.bindingUri = new URI("http://grid0:" + 3000)

25 e.subscribe(onReturn)

26 }

27 }

Line 7 declares that monitor Latency reads and updates the variables declared within the names-
pace State. Line 10 declares an immutable value holding an FScript expression specifying the
multiplication service provided by component Strassen. Line 12 declares a return event on the
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multiplication service. In line 20, the latency variable is updated and tagged with contextual in-
formation. And lines 24 and 25 configure the FraSCAti reconfiguration URI and subscribe the
onReturn handler to the return event e, respectively.

A.2.2 Requirement 2 (Example)

Measure the throughput of the Strassen strategy and update the throughput variable adding the
contextual information strategy, host, and component.

In Pascani this would require to introduce a probe into the Strassen component, and
periodically count the number of served requests (i.e., the number of successful invocations).

1 package co.edu.icesi.driso.matrices.strassen

2

3 import java.net.URI

4 import org.pascani.dsl.lib.events.IntervalEvent

5 import org.pascani.dsl.lib.events.ReturnEvent

6 import static org.pascani.dsl.lib.sca.FluentFPath.$domain

7

8 using co.edu.icesi.driso.matrices.SLI

9 using co.edu.icesi.driso.matrices.State

10

11 monitor Throughput {

12 val target = $domain.child("Strassen").child("matrix").service("multiplication")

13 val routingKey = "strassen.throughput"

14 val bindingUri = new URI("http://grid0:" + 3000)

15 val probe = newProbe(target, routingKey, ReturnEvent, false, bindingUri)

16

17 event i raised periodically on SLI.throughputPeriod

18

19 handler onInterval(IntervalEvent e) {

20 val count = probe.countAndClean(-1, System.currentTimeMillis)

21 val tags = #{

22 "strategy" -> "strassen",

23 "host" -> "grid0",

24 "component" -> "Strassen"

25 }

26 State.throughput = tag(count, tags)

27 }

28

29 config {

30 i.subscribe(onInterval)
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31 }

32 }

Lines 8 and 9 declare that monitor Throughput reads and updates the variables declared within
namespaces SLI and State. Line 15 introduces a new monitor probe into the multiplication

service for collecting return events. Line 17 declares a time-based event using the throughput
period defined in SLI. In line 26, the throughput variable is updated and tagged with contextual
information. And line 30 subscribes the onInterval handler to the periodic event i.

A.3 Practical Exercises

Use Pascani to specify the monitors solving the following monitoring requirements. In all exercises,
be sure of updating the corresponding context variables with the contextual information strategy,
host and component. Please measure the time you spend while solving each exercise. After finishing
the exercises, you will be given a questionnaire to evaluate a set of success factors regarding Pascani.

Exercise 1: Measure the latency for the Block-reduce strategy, registering only the overall latency.

Exercise 2: Measure the latency for the Block-reduce strategy, registering the corresponding values
for all of the components involved in the process of calculation.

Exercise 3: Measure the throughput for the Hybrid-multiplication strategy, registering only the
overall throughput.

Exercise 4: Send an email when the throughput value is less than the specified in the SLI namespace.
For solving this exercise, you will be given an interface and the binding information of
an already deployed email service.

Exercise 5: Define two more monitoring requirements for the case of study and explain how you
would solve them using Pascani.

A.4 Questionnaire for Evaluating Pascani

1. For each exercise, please indicate the time you spent (in minutes) specifying it.
E1. E2. E3. E4. E5.

2. Please describe the difficulties you experienced developing this workshop.
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3. How much time have you been working as a professional Software Engineer?

4. Please describe how much experience you have developing software tests or monitors.

5. Please describe how much experience you have with Pascani.

Please indicate your agreement or disagreement with the following statements by selecting only
one square. The left-most square indicates that you strongly agree, while the right-most square
indicates that you strongly disagree.

Functional Suitability

6. All concepts and building-blocks for solving problems in the software 2—2—2—2—2
monitoring domain can be expressed in Pascani.

7. Pascani is an appropriate and useful tool for specifying software 2—2—2—2—2
monitors.

Usability

8. The language elements are understandable (e.g., language elements 2—2—2—2—2
can be understood after reading their descriptions).

9. The concepts and symbols of the language resemble the terminol- 2—2—2—2—2
ogy of the monitoring domain, are learnable and rememberable (i.e.,
learning easiness, easiness for developing monitor specifications).

10. Pascani helps users achieve their tasks in acceptable development 2—2—2—2—2
times.

11. Pascani is appropriate for developing the type of performance mon- 2—2—2—2—2
itors you need.

90



12. Pascani has useful language elements to operate on monitor data 2—2—2—2—2
and control the actual monitoring operations (e.g., language elements
can be selected and put into practice easily, actions are undoable,
error messages that explain recovery methods are available for con-
trolling the monitoring operations).

13. Pascani has a concise syntax that allows expressing performance 2—2—2—2—2
monitors in short specification files.

Reliability

14. Pascani prevents making errors in monitoring specifications. The 2—2—2—2—2
language constructs helps the user to avoid mistakes.

15. Pascani includes the right elements and correct relationships be- 2—2—2—2—2
tween them (it prevents unexpected interactions between its ele-
ments).

Maintainability

16. Pascani is composed of discrete components such that a change to 2—2—2—2—2
one component has minimal impact on other components.

Productivity

17. The development time of writing software monitors specifications is 2—2—2—2—2
improved.

18. Pascani helps to improve the productivity of monitor development. 2—2—2—2—2

Expressiveness

19. A monitoring strategy can be mapped into a Pascani specification 2—2—2—2—2
easily.

20. Pascani provides one and only one good way to express every con- 2—2—2—2—2
cept of interest.
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21. Each Pascani construct is used to represent exactly one distinct 2—2—2—2—2
concept in the application domain.

22. The language constructs correspond to significant application do- 2—2—2—2—2
main concepts. Pascani does not include domain concepts that are
not important.

23. Pascani does not contain conflicting or ambiguous elements. 2—2—2—2—2

24. Pascani is at the right abstraction level for writing monitoring spec- 2—2—2—2—2
ifications, such that it is not more complex or more detailed than
necessary.

Integrability

25. Pascani can be integrated with other languages used in the software 2—2—2—2—2
development process, such as using already developed libraries. (e.g.,
language integrability with other languages).
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Appendix B

Workshop for Evaluating the Effectiveness of

Amelia

To evaluate the effectiveness of the Amelia DSL, our language that assists application developers
in automating the deployment of component-based software systems, we designed a set of exercises
to use Amelia, and a questionnaire for evaluating the experience. We call this whole exercise a
workshop. The idea for the workshop is to be applied by a group of developers, who will evaluate the
effectiveness of the language. In this section, we explain the workshop evaluation design, including
the case study of application, a short introduction of the language, and then the set of exercises
through which the evaluation process is performed.

B.1 Case Study: The Matrix-Chain Multiplication Problem

The Matrix-Chain Multiplication (MCM) problem is an optimization problem that consists
in finding the most efficient multiplication sequence to multiply a set of given matrices. Our
implementation of the MCM, provided to the workshop participants, splits the problem into three
different subproblems: the matrix-pair multiplication problem, the matrix-chain parenthesization
problem, which finds the optimal sequence of matrix-pair multiplications minimizing the number
of individual additions and multiplications, and the matrix-subchain multiplication scheduling
problem, which finds subsets of matrix multiplications that can be performed concurrently to
decrease the overall multiplication time [30]. In this way, by combining the different solutions
to these subproblems, it is possible to configure several different actual solutions to the whole
problem, which raises a problem of solution configuration. For instance, by combining the first
and second subproblems, one can obtain a solution able to multiply a set of given matrices
reducing the number of individual arithmetical operations. In the same sense, by combining the
first and third subproblems, one would obtain the same solution aforementioned, but this time
reducing multiplication time. And of course, by combining the three subproblems one would reduce
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both operations and overall processing time. In practice, however, there can be computational
limitations and trade-offs that may make infeasible some of the possible solution configurations.

The following figure, in UML notation, depicts the variability of the MCM configurations to
build a concrete solution using a feature model [13].

[1..1]

Matrix-Chain Multiplicator

Strassen Hybrid

Block-reduce

Distributed Sequential Distributed Sequential

[1..1] [1..1]
Matrix-Pair Multiplicator Parenthesizer Scheduler

Feature Optional Mandatory Requires [1..1] AlternativeLegend:

In this implementation of the MCM solution, we take advantage of distributed computational
resources in order to reduce the execution time when multiplying a large number of considerably
big matrices. To this end, we developed two multiplication strategies, one based on the map-reduce
architecture, and a variation of it that significantly reduces network usage. At the end, local
multiplications are performed using the Strassen algorithm.

The following deployment diagrams depict the high-level elements composing each of the
multiplication strategies. For sake of simplicity, we omit the details of the scheduling and
parenthesizing subproblems. As there is only one artifact per strategy (i.e., one resulting artifact
of the compilation process), a note on each diagram specifies the node in which the components
are executed.
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Figure B.1: Deployment Diagram for the Monolithic Strassen Configuration Strategy

The monolithic Strassen configuration strategy considers only a multiplication component that
takes the sequence of matrices as it is, and multiplies them iteratively in one computing node. This
strategy leaves out the optimizations introduced by subproblems matrix-chain parenthesization and
matrix-subchain multiplication scheduling.
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Figure B.2: Deployment Diagram for the BlockReduce Configuration Strategy

The BlockReduce consiguration strategy consists in splitting each matrix into fixed-size blocks
(i.e., sub-matrices) and multiply them as if they were one cell instead of a group of them. For
instance, having two squared matrices A and B, partitioned into 4 blocks each, the resulting matrix
C would be calculated using the same blocks partition strategy. C00 represents the first block
of C, and would be calculated by operating A and B such that C00 = A00 ⇤ B00 + A01 ⇤ B10 +

A02 ⇤ B20 + A03 ⇤ B30. In this strategy, the block size is crucial to find the threshold between the
amount of data transmitted over the network and the size of the blocks to multiply, in order to
reduce the multiplication time. We performed several experiments and found that for matrices of
approximately 3600x3600 elements, the block size with best execution times is 200.

96



<<device>>
grid8

<<device>>
grid2

<<device>>
grid7

<<device>>
grid5

<<device>>
grid11

<<artifact>>
mcm-hybrid-multiplication.jar

<<component>>
Hybrid Multiplication Strategy

<<component>>
BlocksMultiplicator1

<<component>>
BlocksMultiplicator5

<<component>>
BlocksMultiplicator0

<<component>>
BlocksMultiplicator3

<<component>>
BlocksMultiplicator4

<<component>>
BlocksMultiplicator2

<<component>>
HybridMultiplication

<<artifact>>
mcm-common.jar

<<component>>
Common

<<component>>
<<middleware>>

FraSCAri 1.4

<<component>>
<<middleware>>

FraSCAri 1.4

<<component>>
<<middleware>>

FraSCAri 1.4

<<component>>
<<middleware>>

FraSCAri 1.4

<<component>>
<<middleware>>

FraSCAri 1.4

<<manifest>>

<<deploy>>

<<depends>>

<<depends>>

<<manifest>>

Figure B.3: Deployment Diagram for the Hybrid Configuration Strategy

The Hybrid configuration strategy introduces an improvement, in terms of network usage, to
the BlockReduce configuration strategy. However, it is more demanding in terms of processor and
memory usage. In the strategy above, calculating a block in the resulting matrix requires sending as
many pairs of blocks as columns or rows of blocks are, while in this strategy it only requires sending
the whole column and row of blocks. Another advantage of this strategy is that it also reduces the
amount of processors necessary to multiply the blocks.
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Figure B.4: Deployment Diagram for the N-Matrices Configuration Strategy

B.2 The Amelia Language: Specification Examples

Amelia allows specifying two types of elements: Subsystems and Deployments. Along with this
workshop you will be given an overview of the language syntax and the associated semantics.
The following examples describe two deployment requirements and their corresponding solution in
Amelia.

B.2.1 Requirement 1 (Example)

Specify the deployment of the Strassen strategy having into account component dependencies and
the computing nodes specified in the deployment diagram. You may use the following file con-
taining a mapping between the hosts in the deployment diagrams and the laboratory’s computers.
For sake of simplicity assume that every node contains the source code in /tmp/matrices, and
every strategy (including the Common component) is in a subdirectory named: common, strassen,
nmatrices, blockreduce, and hybrid.

1 localhost 21 22 user password localhost
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2 hgrid17 21 22 user password grid0

3 hgrid16 21 22 user password grid1

4 hgrid15 21 22 user password grid2

5 hgrid14 21 22 user password grid3

6 hgrid13 21 22 user password grid4

7 hgrid12 21 22 user password grid5

8 hgrid11 21 22 user password grid6

9 hgrid10 21 22 user password grid7

10 hgrid9 21 22 user password grid8

11 hgrid8 21 22 user password grid9

12 hgrid7 21 22 user password grid10

13 hgrid6 21 22 user password grid11

Listing B.1: hosts.txt

In Amelia this would require to specify a subsystem for generating the corresponding artifacts
from the Strassen and Common components’ source code. Once they are generated, the Strassen
component would be executed. As there are no specific requirements on the deployment, there is
no need to specify a custom deployment strategy.

1 package co.edu.icesi.driso.matrices

2

3 import java.util.List

4 import java.util.Map

5 import org.amelia.dsl.lib.descriptors.Host

6 import org.amelia.dsl.lib.util.Hosts

7

8 subsystem Common {

9 val String artifact = "mcm-common"

10

11 /*

12 * The folder containing all of the Java projects (must be the same across the

different hosts)

13 */

14 param String sources = "/tmp/matrices"

15

16 /*

17 * The folder containing the compiled jar files

18 */

19 param String assets = "assets"

20

21 /*

22 * Common dependencies
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23 */

24 param List<String> classpath = #['<assets>/<artifact>.jar'];

25

26 /**

27 * All hosts, organized by host identifier

28 */

29 param Map<String, Host> hosts = Hosts.hosts("hosts.txt").toMap[h|h.identifier]

30

31 on hosts.values {

32 init:

33 cd sources

34 compile "common/src" '<assets>/<artifact>'

35 }

36 }

Listing B.2: Subsystem for the Common component

1 package co.edu.icesi.driso.matrices

2

3 includes Common

4

5 subsystem Strassen {

6 val String artifact = "mcm-strassen"

7 val Iterable<String> libpath = #['<assets>/<artifact>.jar'] + classpath

8

9 on hosts.get("grid0") {

10 compilation: init;

11 cd sources

12 compile "strassen/src" '<assets>/<artifact>' -classpath classpath

13

14 execution: compilation;

15 run "Strassen" -libpath libpath

16 }

17 }

Listing B.3: Subsystem for the Strassen component

B.2.2 Requirement 2 (Example)

Specify the deployment of the Strassen strategy having into account component dependencies and
the computing nodes specified in the deployment diagram. The deployment must be repeated ten
times sequentially and retry on failure.
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In this case we can reuse the specifications from Example B.2.1 and specify only a custom
deployment strategy that meets the requirement. The sequential deployments can be achieved
using a for statement, and the retry-on-failure feature can be implemented using the RetryableDe-
ployment utility class.

1 package co.edu.icesi.driso.matrices

2

3 import org.amelia.dsl.lib.util.RetryableDeployment

4

5 includes co.edu.icesi.driso.matrices.Strassen

6

7 deployment CustomDeployment {

8 val utility = new RetryableDeployment

9

10 for (i: 1..10) {

11 utility.deploy([

12 start(true)

13 ], 2)

14 }

15 }

Listing B.4: Custom deployment strategy for the Strassen component

B.3 Practical Exercises

Use Amelia to specify the necessary files to solve the following deployment requirements. Please
measure the time you spend while solving each exercise. After finishing the exercises, you will be
given a questionnaire to evaluate a set of success factors regarding Amelia.

Exercise 1: Specify the deployment specification for the hybrid-multiplication strategy having into
account component dependencies and the computing nodes specified in the deployment
diagram B.3.

Exercise 2: Specify the deployment for the block-reduce strategy having into account component
dependencies and the computing nodes specified in the deployment diagram B.2.

Exercise 3: Specify the deployment for the N-matrices strategy having into account component de-
pendencies and the computing nodes specified in the deployment diagram B.4. Please
remember that each processor component in the N-matrices strategy requires a multi-
plication service; for this exercise, please reuse the specifications from Exercise 1.
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Exercise 4: Define two more deployment requirements for the case of study and explain how you
would solve them using Amelia.

B.4 Questionnaire for Evaluating Amelia

1. For each exercise, please indicate the time you spent (in minutes) specifying it.
E1. E2. E3. E4.

2. Please describe the difficulties you experienced developing this workshop.

3. How much time have you been working as a professional Software Engineer?

4. Please describe how much experience you have deploying software.

5. Please describe how much experience you have with Amelia.

Please indicate your agreement or disagreement with the following statements by selecting only
one square. The left-most square indicates that you strongly agree, while the right-most square
indicates that you strongly disagree.

Functional Suitability

6. All concepts and building-blocks for solving problems in the software 2—2—2—2—2
deployment domain can be expressed in Amelia.

7. Amelia is an appropriate and useful tool for deploying software. 2—2—2—2—2

Usability

8. The language elements are understandable (e.g., language elements 2—2—2—2—2
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can be understood after reading their descriptions).

9. The concepts and symbols of the language resemble the terminol- 2—2—2—2—2
ogy of the deployment domain, are learnable and rememberable (i.e.,
learning easiness, easiness for developing deployment specifications).

10. Amelia helps users achieve their tasks in acceptable development 2—2—2—2—2
times.

11. Amelia is appropriate for the deployment of the type of software 2—2—2—2—2
you work on.

12. Amelia has useful language elements to control the actual deploy- 2—2—2—2—2
ment operations (e.g., language elements can be selected and put
into practice easily, actions are undoable, error messages that explain
recovery methods are available for controlling the deployment opera-
tions).

13. Amelia has a concise syntax that allows expressing deployment op- 2—2—2—2—2
erations in short specification files.

Reliability

14. Amelia prevents making errors in deployment specifications. The 2—2—2—2—2
language constructs helps the user to avoid mistakes.

15. Amelia includes the right elements and correct relationships be- 2—2—2—2—2
tween them (it prevents unexpected interactions between its ele-
ments).

Maintainability

16. Amelia is composed of discrete components such that a change to 2—2—2—2—2
one component has minimal impact on other components.

Productivity

17. The development time of writing software deployment specifications 2—2—2—2—2
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is improved.

18. Amelia helps to improve the productivity of system deployment. 2—2—2—2—2

Expressiveness

19. A deployment strategy can be mapped into a Amelia specification 2—2—2—2—2
easily.

20. Amelia provides one and only one good way to express every con- 2—2—2—2—2
cept of interest.

21. Each Amelia construct is used to represent exactly one distinct 2—2—2—2—2
concept in the application domain.

22. The language constructs correspond to significant application do- 2—2—2—2—2
main concepts. Amelia does not include domain concepts that are
not important.

23. Amelia does not contain conflicting or ambiguous elements. 2—2—2—2—2

24. Amelia is at the right abstraction level for writing deployment spec- 2—2—2—2—2
ifications, such that it is not more complex or more detailed than
necessary.

Integrability

25. Amelia can be integrated with other languages used in the software 2—2—2—2—2
development process, such as using already developed libraries. (e.g.,
language integrability with other languages).
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Appendix C

Pascani Grammar Definition

Pascani grammar definition.

1 grammar org.pascani.dsl.Pascani with org.eclipse.xtext.xbase.Xbase

2

3 import "http://www.eclipse.org/xtext/common/JavaVMTypes" as types

4 import "http://www.eclipse.org/xtext/xbase/Xbase"

5

6 generate pascani "http://www.pascani.org/dsl/Pascani"

7

8 Model

9 : ('package' name = QualifiedName ->';'?)?

10 imports = XImportSection?

11 typeDeclaration = TypeDeclaration?

12 ;

13

14 TypeDeclaration

15 : MonitorDeclaration

16 | NamespaceDeclaration

17 ;

18

19 MonitorDeclaration returns Monitor

20 : extensions = ExtensionSection?

21 'monitor' name = ValidID

22 body = MonitorBlockExpression

23 ;

24

25 ExtensionSection

26 : declarations += ExtensionDeclaration+

27 ;

28
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29 ExtensionDeclaration

30 : ImportEventDeclaration

31 | ImportNamespaceDeclaration

32 ;

33

34 ImportEventDeclaration

35 : 'from' monitor = [Monitor | QualifiedName]

36 'import' events += [Event | ID] (',' events += [Event | ID])* ->';'?

37 ;

38

39 ImportNamespaceDeclaration

40 : 'using' namespace = [Namespace | QualifiedName] ->';'?

41 ;

42

43 MonitorBlockExpression returns XBlockExpression

44 : {MonitorBlockExpression} '{' (expressions += InternalMonitorDeclaration)* '}'

45 ;

46

47 InternalMonitorDeclaration returns XExpression

48 : VariableDeclaration ->';'?

49 | ConfigBlockExpression

50 | EventDeclaration

51 | HandlerDeclaration

52 ;

53

54 NamespaceDeclaration returns Namespace

55 : 'namespace' name = ValidID body = NamespaceBlockExpression

56 ;

57

58 NamespaceBlockExpression returns XBlockExpression

59 : {NamespaceBlockExpression} '{' (expressions += InternalNamespaceDeclaration)* '}'

60 ;

61

62 InternalNamespaceDeclaration returns XExpression

63 : VariableDeclaration ->';'?

64 | NamespaceDeclaration

65 ;

66

67 VariableDeclaration returns XExpression

68 : {VariableDeclaration}

69 (writeable ?= 'var'|'val')

70 (=> (type = JvmTypeReference name = ValidID) | name = ValidID) ('=' right =

XExpression)?
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71 ;

72

73 ConfigBlockExpression returns XBlockExpression

74 : {ConfigBlockExpression} 'config' '{' (expressions += XExpressionOrVarDeclaration

';'?)* '}'

75 ;

76

77 HandlerDeclaration returns Handler

78 : 'handler' name = ValidID

79 '(' params += FullJvmFormalParameter (',' params += FullJvmFormalParameter)* ')'

80 body = XBlockExpression

81 ;

82

83 EventDeclaration returns Event

84 : 'event' name = ValidID 'raised' (periodical ?= 'periodically')? 'on' emitter =

EventEmitter ->';'?

85 ;

86

87 EventEmitter

88 : eventType = EventType 'of' emitter = XExpression (=> specifier =

AndEventSpecifier)?

89 | cronExpression = XExpression

90 ;

91

92 enum EventType

93 : invoke

94 | return

95 | change

96 | exception

97 ;

98

99 AndEventSpecifier returns EventSpecifier

100 : OrEventSpecifier

101 (

102 {AndEventSpecifier.left = current}

103 operator='and' right = OrEventSpecifier

104 )*

105 ;

106

107 OrEventSpecifier returns EventSpecifier

108 : SimpleEventSpecifier

109 (

110 {OrEventSpecifier.left = current}
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111 operator='or' right = SimpleEventSpecifier

112 )*

113 ;

114

115 SimpleEventSpecifier returns EventSpecifier

116 : (below ?= 'below' | above ?= 'above' | equal ?= 'equal' 'to')

117 value = XExpression (percentage ?= '%%')?

118 | '(' AndEventSpecifier ')'

119 ;

120

121 CronExpression

122 : lsymbol = ' '

123 seconds = CronElement

124 minutes = CronElement

125 hours = CronElement

126 dayOfMonth = CronElement

127 month = CronElement

128 dayOfWeek = CronElement

129 (year = CronElement)?

130 rsymbol = ' '

131 ;

132

133 CronElement

134 : CronElementList | IncrementCronElement | NthCronElement

135 ;

136

137 /*

138 * Options L and W of the Quartz scheduler are only supported

139 * in cases were they are found alone (by means of rule ValidID).

140 */

141 CronElementList

142 : elements += RangeCronElement (',' elements += RangeCronElement)*

143 ;

144

145 IncrementCronElement

146 : start = TerminalCronElement ('-' end = TerminalCronElement)? '/' increment =

TerminalCronElement

147 ;

148

149 RangeCronElement

150 : TerminalCronElement ({RangeCronElement.start = current} '-' end =

TerminalCronElement)?

151 ;
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152

153 NthCronElement

154 : element = TerminalCronElement '#' nth = TerminalCronElement

155 ;

156

157 TerminalCronElement

158 : expression = (IntLiteral | ValidID | '*' | '?')

159 ;

160

161 IntLiteral

162 : INT

163 ;

164

165 XLiteral returns XExpression

166 : XCollectionLiteral

167 | XClosure

168 | XBooleanLiteral

169 | XNumberLiteral

170 | XNullLiteral

171 | XStringLiteral

172 | XTypeLiteral

173 | CronExpression

174 ;
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Appendix D

Amelia Grammar Definition

Amelia grammar definition.

1 grammar org.amelia.dsl.Amelia with org.eclipse.xtext.xbase.Xbase

2

3 import "http://www.eclipse.org/xtext/xbase/Xbase" as xbase

4 import "http://www.eclipse.org/emf/2002/Ecore" as ecore

5

6 generate amelia "http://www.amelia.org/dsl/Amelia"

7

8 Model

9 : 'package' name = QualifiedName ->';'?

10 importSection = XImportSection?

11 typeDeclaration = TypeDeclaration?

12 ;

13

14 TypeDeclaration

15 : SubsystemDeclaration

16 | DeploymentDeclaration

17 ;

18

19 DeploymentDeclaration

20 : extensions = ExtensionSection?

21 'deployment' name = ID body = XBlockExpression

22 ;

23

24 SubsystemDeclaration returns Subsystem

25 : extensions = ExtensionSection?

26 'subsystem' name = ID body = SubsystemBlockExpression

27 ;

28
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29 ExtensionSection

30 : declarations += ExtensionDeclaration+

31 ;

32

33 ExtensionDeclaration

34 : DependDeclaration

35 | IncludeDeclaration

36 ;

37

38 IncludeDeclaration

39 : 'includes' element = [TypeDeclaration | QualifiedName] ->';'?

40 ;

41

42 DependDeclaration

43 : 'depends' 'on' element = [TypeDeclaration | QualifiedName] ->';'?

44 ;

45

46 SubsystemBlockExpression

47 : {SubsystemBlockExpression} '{' (expressions += InternalSubsystemDeclaration)* '}'

48 ;

49

50 InternalSubsystemDeclaration returns xbase::XExpression

51 : VariableDeclaration ->';'?

52 | OnHostBlockExpression

53 | ConfigBlockExpression

54 ;

55

56 VariableDeclaration

57 : {VariableDeclaration}

58 (writeable?='var'|'val'|param?='param')

59 (=> (type = JvmTypeReference name = ValidID) | name = ValidID) ('=' right =

XExpression)?

60 ;

61

62 ConfigBlockExpression returns xbase::XBlockExpression

63 : {ConfigBlockExpression} 'config' '{' (expressions += XExpressionOrVarDeclaration

';'?)* '}'

64 ;

65

66 OnHostBlockExpression

67 : 'on' hosts = XExpression '{' (rules += RuleDeclaration)* '}'

68 ;

69
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70 RuleDeclaration

71 : name = ID ':'

72 (=> (dependencies += [RuleDeclaration | QualifiedName] (',' dependencies +=

[RuleDeclaration | QualifiedName])*)? ';')?

73 (commands += XExpression)*

74 ;

75

76 CdCommand

77 : 'cd' directory = XExpression (=> initializedLater ?= '...')?

78 ;

79

80 CompileCommand

81 : 'compile' source = XExpression output = XExpression

82 (=> '-classpath' classpath = XExpression)?

83 (=> initializedLater ?= '...')?

84 ;

85

86 RunCommand

87 :

88 'run' (hasPort ?= '-r' port = XExpression)?

89 composite = XExpression '-libpath' libpath = XExpression

90 (=>

91 hasService ?= ('-s' | '--service-name') service = XExpression

92 hasMethod ?= ('-m' | '--method-name') method = XExpression

93 (=> hasParams ?= '-p' params = XExpression)?

94 )?

95 (=> initializedLater ?= '...')?

96 ;

97

98 TransferCommand

99 : 'scp' source = XExpression 'to' destination = XExpression

100 ;

101

102 EvalCommand

103 : (=> 'on' uri = XExpression)? 'eval' script = XExpression

104 ;

105

106 CustomCommand

107 : 'cmd' value = XExpression (=> initializedLater ?= '...')?

108 ;

109

110 CommandLiteral

111 : CdCommand
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112 | CompileCommand

113 | CustomCommand

114 | EvalCommand

115 | RunCommand

116 | TransferCommand

117 ;

118

119 RichString

120 :

121 {RichString} (expressions += RichStringLiteral)

122 | (

123 expressions += RichStringLiteralStart

124 (expressions += XExpression (expressions += RichStringLiteralMiddle

expressions += XExpression)*)

125 expressions += RichStringLiteralEnd

126 )

127 ;

128

129 RichStringLiteral

130 : {RichStringLiteral} value = RICH_TEXT

131 ;

132

133 RichStringLiteralStart

134 : {RichStringLiteral} value = RICH_TEXT_START

135 ;

136

137 RichStringLiteralMiddle

138 : {RichStringLiteral} value = RICH_TEXT_MIDDLE

139 ;

140

141 RichStringLiteralEnd

142 : {RichStringLiteral} value = RICH_TEXT_END

143 ;

144

145 XLiteral returns xbase::XExpression

146 : XCollectionLiteral

147 | XClosure

148 | XBooleanLiteral

149 | XNumberLiteral

150 | XNullLiteral

151 | XTypeLiteral

152 | XStringLiteral

153 | CommandLiteral
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154 | RichString

155 ;

156

157 terminal RICH_TEXT

158 : "'" ('\\' . | !('\\' | "'" | '<' | '>') )* "'"

159 ;

160

161 terminal RICH_TEXT_START

162 : "'" ('\\' . | !('\\' | "'" | '<') )* '<'

163 ;

164

165 terminal RICH_TEXT_MIDDLE

166 : '>' ('\\' . | !('\\' | "'" | '<') )* '<'

167 ;

168

169 terminal RICH_TEXT_END

170 : '>' ('\\' . | !('\\' | "'" | '<') )* "'"

171 ;

172

173 terminal STRING

174 : '"' ( '\\' . /* ('b'|'t'|'n'|'f'|'r'|'u'|'"'|"'"|'\\') */ | !('\\'|'"') )* '"'?

175 ;
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