Inducción de la producción de alcaloides tipo galantamina y licorina en Eucharis grandiflora mediante ácido salicílico y un sistema de inmersión temporal
dc.audience | Todo Público | |
dc.contributor.advisor | Buitrago González, María Eugenia | |
dc.contributor.advisor | Caicedo Burbano, Paola Andrea | |
dc.contributor.author | Fernández Bahamón, Isabella | |
dc.coverage.spatial | Cali de Lat: 03 24 00 N degrees minutes Lat: 3.4000 decimal degrees Long: 076 30 00 W degrees minutes Long: -76.5000 decimal degrees. | |
dc.date.accessioned | 2025-06-13T20:10:16Z | |
dc.date.available | 2025-06-13T20:10:16Z | |
dc.date.issued | 2024-12-12 | |
dc.description.abstract | La familia Amaryllidaceae es reconocida por producir metabolitos secundarios conocidos como alcaloides, que tienen propiedades farmacológicas y terapéuticas de gran interés para el tratamiento de diversas enfermedades. Teniendo en cuenta su utilidad y relevancia se han planteado nuevas estrategias para mejorar la obtención de alcaloides. Una de estas es utilizar cultivos in vitro para favorecer la propagación de material vegetal en conjunto con la adición de elicitores que generen estímulos permitiendo una mayor producción de estos compuestos. En este proyecto se evalúa la producción de alcaloides tipo galantamina y licorina a par tir de bulbillos de Eucharis grandiflora producidos in vitro expuestos al elicitor ácido salicílico en un sistema de inmersión temporal (SIT). El objetivo del presente estudio es evaluar el efecto de dos concentraciones de ácido salicílico en la producció n de alcaloides tipo galantamina y licorina en plantas de Eucharis grandiflora cultivadas en un SIT. Para ello, las concentraciones que se utilizarán son: 0.1 mM y 0.25 mM tratadas durante 24 días. El crecimiento vegetal se evaluó en términos de longitud d e hojas, raíces y acumulación de biomasa. Por último, la producción de alcaloides se determinó mediante la técnica de espectrofotometría UV. Los resultados obtenidos mostraron que la concentración de 0.1 mM de ácido salicílico incrementa significativamente la producción de galantamina y licorina. Adicionalmente, esta concentración no genera un efecto negativo en las variables físicas evaluadas. | spa |
dc.description.abstract | The Amaryllidaceae family is recognized for producing secondary metabolites known as alkaloids, which have pharmacological and therapeutic properties of great interest for the treatment of various diseases. Given their usefulness and relevance, new strategies have been proposed to improve the obtainment of alkaloids. One of these is to use in vitro cultures to favor the propagation of plant material in conjunction with the addition of elicitors that generate stimuli allowing for greater production of these compounds. This project evaluates the production of galantamine and lycorine-type alkaloids from in vitro produced Eucharis grandiflora bulbils exposed to the elicitor salicylic acid in a temporary immersion system (TIS). The objective of the present study is to evaluate the effect of two concentrations of salicylic acid on the production of galantamine and lycorine-type alkaloids in Eucharis grandiflora plants grown in a TIS. For this purpose, the concentrations to be used are: 0.1 mM and 0.25 mM treated for 24 days. Plant growth was evaluated in terms of leaf and root length and biomass accumulation. Finally, alkaloid production was determined using UV spectrophotometry. The results obtained showed that the concentration of 0.1 mM salicylic acid significantly increases the production of galantamine and licorine. Additionally, this concentration does not generate a negative effect on the physical variables evaluated. | eng |
dc.description.degreelevel | Profesional | |
dc.description.degreename | Trabajo de Grado para obtener el título del Programa de Química Farmacéutica | |
dc.description.tableofcontents | Introducción -- Conclusión -- Agradecimientos -- Referencias bibliográficas | spa |
dc.format.extent | 30 páginas | |
dc.format.medium | Digital | |
dc.format.mimetype | application/pdf | |
dc.identifier.OLIB | https://biblioteca2.icesi.edu.co/cgi-olib/?oid=365029 | |
dc.identifier.instname | instname:Universidad Icesi | |
dc.identifier.reponame | reponame:Biblioteca Digital | |
dc.identifier.repourl | repourl:https://repository.icesi.edu.co/ | |
dc.identifier.uri | https://hdl.handle.net/10906/130357 | |
dc.language.iso | spa | |
dc.publisher | Universidad Icesi | |
dc.publisher.faculty | Barberi de Ingeniería, Diseño y Ciencias Aplicadas | |
dc.publisher.place | Santiago de cali | |
dc.publisher.program | Química Farmacéutica | |
dc.relation.references | 1. Masi, M. et al. Alkaloids isolated from indigenous South African Amaryllidaceae: Crinum buphanoides (Welw. ex Baker) , Crinum graminicola (I. Verd.), Cyrtanthus mackenii (Hook. f) and Brunsvigia grandiflora (Lindl). South African Journal of Botany 118, 188 – 191 (2018). | spa |
dc.relation.references | 2. Nair, J. J. & van Staden, J. Anti - inflammatory effects of the plant family Amaryllidaceae. Journal of Et hnopharmacology 327, 117943 (2024). | spa |
dc.relation.references | 3. Tallini, L. R., Giordani, R. B., de Andrade, J. P., Bastida, J. & Zuanazzi , J. A. S. Structural Diversity and Biological Potential of Alkaloids from the Genus Hippeastrum, Amaryllidaceae: an Update. Revista Brasileira de Farmacognosia 31, 648 – 657 (2021). | spa |
dc.relation.references | 4. Zhang, P. et al. Lycorine inhibits melanoma cell migration and metastasis m ainly through reducing intracellular levels of β - catenin and matrix metallopeptidase 9. Journal of cellular physiology 234, 10566 – 10575 (2019). | spa |
dc.relation.references | 5. Masi, M. et al. Alkaloids isolated from Haemanthus humilis Jacq., an indigenous South African Amaryllidaceae: An ticancer activity of coccinine and montanine. South African Journal of Botany 126, 277 – 281 (2019). | spa |
dc.relation.references | 6. He, M., Qu, C., Gao, O., Hu, X. & Hong, X. Biological and pharmacological activities of amaryllidaceae alkaloids. RSC Advances 5, 16562 – 16574 (2015). | spa |
dc.relation.references | 7. Leon, F . & Evidente, A. Advances on the Amaryllidacea Alkaloids Collected in South Africa, Andean South America and the Mediterranean Basin. Molecules 2023, Vol. 28, Page 4055 28, 4055 (2023). | spa |
dc.relation.references | 8. Nair, J. J. & van Staden, J. Insight to the antifungal properties of A maryllidaceae constituents. Phytomedicine 73, 152753 (2020). | spa |
dc.relation.references | 9. Nair, J. J. & van Staden, J. Antiplasmodial constituents in the minor alkaloid groups of the Amaryllidaceae. South African Journal of Botany 126, 362 – 370 (2019). | spa |
dc.relation.references | 10. Masi, M. et al. Sarniensine, a me sembrine - type alkaloid isolated from Nerine sarniensis, an indigenous South African Amaryllidaceae, with larvicidal and adulticidal activities against Aedes aegypti. Fitoterapia 116, 34 – 38 (2017). | spa |
dc.relation.references | 11. Pang, Z. et al. Linking Plant Secondary Metabolites and Pla nt Microbiomes: A Review. Frontiers in Plant Science 12, 621276 (2021). | spa |
dc.relation.references | 12. Martínez, J. F. Optimización de la producción de alcaloides en plantas de Zephyranthes carinata cultivadas in vitro en Sistemas de Inmersión Temporal. (Universidad Icesi, 2021). | spa |
dc.relation.references | 13. Chen, H. et al. Antiviral activity of lycorine against Zika virus in vivo and in vitro. Virology 546, 88 – 97 (2020). | spa |
dc.relation.references | 14. Guerrero - Valencia, F. A. et al. Micropropagación del lirio amazónico (Eucharis grandiflora Planch. & Linden) mediante organogénesis directa. Polib otánica 0, 141 – 153 (2021). | spa |
dc.relation.references | 15. Cabezas Fabio, Argoti Juan, Martinez Santiago M, Bastida, J. & Viladomat, F. Alcaloides y actividad biológica en Eucharis amazonica, E. grandiflora, Caliphruria subedentata y Crinum kunthianum, especies colombianas de amaryllidac eae. Scientia Et Technica XIII, 237 – 241 (2007). | spa |
dc.relation.references | 16. Georgiev, V., Ivanov, I. & Pavlov, A. Recent Progress in Amaryllidaceae Biotechnology. Molecules 25, (2020). | spa |
dc.relation.references | 17. Katoch, D., Kumar, D., Padwad, Y. S., Singh, B. & Sharma, U. Pseudolycorine N - oxide, a new N - oxide from Narcissus tazetta. Natural Product Research 34, 2051 – 2058 (2020). | spa |
dc.relation.references | 18. Ptak, A. et al. Elicitation of galanthamine and lycorine biosynthesis by Leucojum aest ivum L. and L. aestivum ‘Gravety Giant’ plants cultured in bioreactor RITA®. Plant Cell Tissue Organ Cult 128, 335 – 345 (2017). | spa |
dc.relation.references | 19. Chandran, H., Meena, M., Barupal, T. & Sharma, K. Plant tissue culture as a perpetual source for production of industrially impor tant bioactive compounds. Biotechnology Reports 26, e00450 (2020). | spa |
dc.relation.references | 20. Marchev, A. S., Yordanova, Z. P. & Georgiev, M. I. Green (cell) factories for advanced production of plant secondary metabolites. Critical Reviews in Biotechnology 40, 443 – 458 (2020). | spa |
dc.relation.references | 21. Espin osa - Leal, C. A., Puente - Garza, C. A. & García - Lara, S. In vitro plant tissue culture: means for production of biological active compounds. Planta 248, 1 (2018). | spa |
dc.relation.references | 22. Murthy, H. N., Lee, E. J. & Paek, K. Y. Production of secondary metabolites from cell and organ cultures: Strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell Tissue Organ Cult 118, 1 – 16 (2014). | spa |
dc.relation.references | 23. Al, A., Cahlíková, L. & Al Mamun, A. Amaryllidaceae alkaloids of genus Narcissus and their biological activity. (2023). | spa |
dc.relation.references | 24. Colque, R., Viladomat, F., Bastida, J. & Codina, C. Improved production of galanthamine and related alkaloids by methyl jasmonate in Narcissus confusus shoot - clumps. Planta Medica 70, 1180 – 1188 (2004). | spa |
dc.relation.references | 25. Teoh, E. S. Secondary Metabolites of Plants. Medicina l Orchids of Asia 59 (2016) doi:10.1007/978 - 3 - 319 - 24274 - 3_5. | spa |
dc.relation.references | 26. Kessler, A. & Kalske, A. Plant secondary metabolite diversity and species interactions. Annual Review of Ecology, Evolution, and Systematics 49, 115 – 138 (2018). | spa |
dc.relation.references | 27. Ullah, C., Chen, Y. H., Ortega, M. A. & Tsai, C. J. The diversity of salicylic acid biosynthesis and defense signaling in plants: Knowledge gaps and future opportunities. Current Opinion in Plant Biology 72, 102349 (2023). | spa |
dc.relation.references | 28. Mishra, S. et al. Salicylic acid (SA) - mediated plant immunity again st biotic stresses: An insight on molecular components and signaling mechanism. Plant Stress 11, 100427 (2024). | spa |
dc.relation.references | 29. Kaur, H. et al. Harnessing plant biotechnology - based strategies for in vitro galanthamine (GAL) biosynthesis: a potent drug against Alzheimer’s disease. Plant Cell, Tissue and Organ Culture (PCTOC) 2022 149:1 149, 81 – 103 (2022). | spa |
dc.relation.references | 30. Selwal, N. et al. Enhancing secondary metabolite production in plants: Exploring traditional and modern strategies. Journal of Agriculture and Food Research 14, 100702 (20 23). | spa |
dc.relation.references | 31. Nair, J. J., Bastida, J., Codina, C., Viladomat, F. & van Staden, J. Alkaloids of the South African Amaryllidaceae: a Review. | spa |
dc.relation.references | 32. Yue, W. et al. Medicinal plant cell suspension cultures: pharmaceutical applications and high - yielding strategies for the desired secondary metabolites. Critical Reviews in Biotechnology 36, 215 – 232 (2016). | spa |
dc.relation.references | 33. Dempsey, D. A. & Klessig, D. F. Salicylic Acid. E ncyclopedia of Hormones 321 – 329 (2003) doi:10.1016/B0 - 12 - 341103 - 3/00266 - 7. | spa |
dc.relation.references | 34. Leon, F. & Evidente, A. Advances on the Amaryllidacea Alkaloids Collected in South Africa, Andean South America and the Mediterranean Basin. Molecules 2023, Vol. 28, Page 4055 28, 4 055 (2023). | spa |
dc.relation.references | 35. de Carlo, A. et al. Temporary Immersion System for Production of Biomass and Bioactive Compounds from Medicinal Plants. Agronomy 2021, Vol. 11, Page 2414 11, 2414 (2021). | spa |
dc.relation.references | 36. Mirzabe, A. H., Hajiahmad, A., Fadavi, A. & Rafiee, S. Temporary immersio n systems (TISs): A comprehensive review. Journal of Biotechnology 357, 56 – 83 (2022). | spa |
dc.relation.references | 37. Martín - Mex, R., Nexticapan - Garcez, A. & Larqué - Saavedra, A. Potential Benefits of Salicylic Acid in Food Production. SALICYLIC ACID 299 – 313 (2013) doi:10.1007/978 - 94 - 007 - 6428 - 6_13. | spa |
dc.relation.references | 38. Schumann, A. et al. Elicitation of galanthamine production by Leucojum aestivum shoots grown in temporary immersion system. Biotechnology progress 29 , 311 – 318 (2013). | spa |
dc.relation.references | 39. Bokov , D. O. STANDARDIZATION OF SNOWDROP (GALANTHUS L.) HERBAL PHARMACEUTICAL SUBSTANCES BY UV - SPECTROPHOTOMETRY. Asian Journal of Pharmaceutical and Clinical Research 11, 207 – 211 (2018). | spa |
dc.relation.references | 40. Numan Taspinar, Y. & Bulduk, İ. Alternative Analytical Methods for Quanti fication of Galantamine in Pharmaceuticals. Aegean Journal of Medical Sciences 5, 58 – 64 (2022). | spa |
dc.relation.references | 41. Ali, B. Salicylic acid: An efficient elicitor of secondary metabolite production in plants. Biocatalysis and Agricultural Biotechnology 31 , 101884 (2021). | spa |
dc.relation.references | 42. Nandy , S., Das, T. & Dey, A. Role of Jasmonic Acid and Salicylic Acid Signaling in Secondary Metabolite Production. 87 – 113 (2021) doi:10.1007/978 - 3 - 030 - 75805 - 9_5. | spa |
dc.relation.references | 43. Hadizadeh, M., Ofoghi, H., Kianirad, M. & Amidi, Z. Elicitation of pharmaceutical alkaloids biosyn thesis by salicylic acid in marine microalgae Arthrospira platensis. Algal Research 42 , 101597 (2019). | spa |
dc.relation.references | 44. Desgagné - Penix, I. Biosynthesis of alkaloids in Amaryllidaceae plants: a review. Phytochemistry Reviews 20 , 409 – 431 (2021). | spa |
dc.relation.references | 45. Isah, T. Stress and defense r esponses in plant secondary metabolites production. Biological Research 2019 52:1 52, 1 – 25 (2019). | spa |
dc.relation.references | 46. Thakur, M., Bhattacharya, S., Khosla, P. K. & Puri, S. Improving production of plant secondary metabolites through biotic and abiotic elicitation. J Appl Res Med Aromat Plants 12, 1 – 12 (2019). | spa |
dc.relation.references | 47. Kang, S. M. et al. Effects of methyl jasmonate and salicylic acid on the production of tropane alkaloids and the expression of PMT and H6H in adventitious root cultures of Scopolia parviflora. Plant Science 166, 745 – 751 (2004). | spa |
dc.relation.references | 48. Woch, N., Laha, S. & Gudipalli, P. Salicylic acid and jasmonic acid induced enhanced production of total phenolics, flavonoids, and antioxidant metabolism in callus cultures of Givotia moluccana (L.) Sreem. In Vitro Cell.Dev.Biol. - Plant 59, 227 – 24 8 (2023). | spa |
dc.relation.references | 49. Wen, Y. et al. Metabolic Effects of Elicitors on the Biosynthesis of Tropane Alkaloids in Medicinal Plants. Plants 12 , 3050 (2023). | spa |
dc.relation.references | 50. Duan, Y., Zhang, H., Meng, X. et al. Accumulation of salicylic acid - elicited alkaloid compounds in in vitro cultured Pinellia ternata microtubers and expression profiling of genes associated with benzoic acid - derived alkaloid biosynthesis. Plant Cell Tiss Organ Cult 139, 317 – 325 (2019). | spa |
dc.relation.references | 51. Alisandre Valverde, D. EVALUACIÓN DEL EFECTO DEL METIL JASMONATO Y EL ÁCIDO JASMÓNICO EN LA LIBERACIÓN DE ALCALOIDES PRODUCIDOS in vitro EN Zephyranthes carinata. (UNIVERSIDAD ICESI, SANTIAGO DE CALI, 2017). | spa |
dc.rights | EL AUTOR, expresa que la obra objeto de la presente autorización es original y la elaboró sin quebrantar ni suplantar los derechos de autor de terceros, y de tal forma, la obra es de su exclusiva autoría y tiene la titularidad sobre éste. PARÁGRAFO: en caso de queja o acción por parte de un tercero referente a los derechos de autor sobre el artículo, folleto o libro en cuestión, EL AUTOR, asumirá la responsabilidad total, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos, la Universidad Icesi actúa como un tercero de buena fe. Esta autorización, permite a la Universidad Icesi, de forma indefinida, para que en los términos establecidos en la Ley 23 de 1982, la Ley 44 de 1993, leyes y jurisprudencia vigente al respecto, haga publicación de este con fines educativos Todo persona que consulte ya sea la biblioteca o en medio electróico podrá copiar apartes del texto citando siempre la fuentes, es decir el título del trabajo y el auto | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.license | Attribution-NonCommercial-NoDerivatives 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.proposal | Galantamina | spa |
dc.subject.proposal | Licorina | spa |
dc.subject.proposal | Ácido salicílico | spa |
dc.subject.proposal | Cultivos in vitro | spa |
dc.subject.proposal | Amarilidáceas | spa |
dc.subject.proposal | Galantamine | eng |
dc.subject.proposal | Lycorine | eng |
dc.subject.proposal | Salicylic acid | eng |
dc.subject.proposal | In vitro cultures | eng |
dc.subject.proposal | Amaryllidaceae | eng |
dc.subject.proposal | Trabajos de grado de Química Farmacéutica | spa |
dc.title | Inducción de la producción de alcaloides tipo galantamina y licorina en Eucharis grandiflora mediante ácido salicílico y un sistema de inmersión temporal | spa |
dc.type | bachelor thesis | |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.local | Trabajo de grado | |
dc.type.version | info:eu-repo/semantics/publishedVersion |