Logo_Icesi
 

Simulation and analysis of compressed sensing technique as sampling and data compression and reconstruction of signals using convex programming

dc.audienceComunidad Universidad Icesi – Investigadoresspa
dc.audienceanavarro@icesi.edu.co
dc.contributor.advisor21st Symposium on Signal Processing, Images and Artificial Vision, STSIVA 2016spa
dc.contributor.authorNavarro Cadavid, Andrésspa
dc.coverage.spatialCanada (inhabited place) Coordinates: Lat: 38 21 00 N degrees minutes Lat: 38.3500 decimal degrees Long: 097 06 00 W degrees minutes Long: -97.1000 decimal degrees
dc.date.accessioned2017-08-17T21:49:13Z
dc.date.available2017-08-17T21:49:13Z
dc.date.issued2016-12-14
dc.description.abstractThe information management has been treated primarily under the Nyquist sampling theory, but it is important to introduce new theories that replace deficiencies of what we know as the classical theory of sampling. These deficiencies create difficulties in data acquisition; this is a problem when large volumes of information are handled, in addition to the higher costs in storage and processing. This article presents the results obtained from the compressed sensing simulation technique applied to two types of signals. The aim of this paper was to simulate a communication system involving the data recovery applying the compressed sensing technique, analyzing sampling rates reduction, measuring the efficiency of the process and the behavior of the technique. The recovery of the signal is made using convex programming and using l1 norm minimization for recover the signals in the time domain. We used the L1Magic toolbox, which is a set of Matlab® functions used to solve optimization problems in this case with the l1eqpd function. As a summary of the obtained results, we checked the efficiency of the compressed sensing technique, minimum average rates for sampling the constructed signals, and the best performance of the technique to recover soft signals compared to non-differentiable signals. Additionally, the recovery results of an audio signal with the compressed sensing technique, by varying the sampling rate and checking the audibility of the signal, are presented. This allowed the testing of this technique in a real scenario, finding a good opportunity for the transmission of audio signals in a more efficient way.eng
dc.description.sponsorshipUniversidad Pontificia Bolivariana (UPB)spa
dc.format.extent[Sin páginación]
dc.format.mediumDigitalspa
dc.format.mimetypeapplication/pdf
dc.identifier.doihttp://dx.doi.org/10.1109/STSIVA.2016.7743312
dc.identifier.instnameinstname:Universidad Icesi
dc.identifier.isbn9781509037971
dc.identifier.reponamereponame:Biblioteca Digital
dc.identifier.repourlrepourl:https://repository.icesi.edu.co/
dc.identifier.urihttp://hdl.handle.net/10906/81948
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.publisher.departmentDepartamento Tecnologías de Información y Comunicacionesspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeCanadaspa
dc.publisher.programIngeniería Telemáticaspa
dc.relation.ispartof21st Symposium on Signal Processing, Images and Artificial Vision, STSIVA 201
dc.rightsEL AUTOR, expresa que la obra objeto de la presente autorización es original y la elaboró sin quebrantar ni suplantar los derechos de autor de terceros, y de tal forma, la obra es de su exclusiva autoría y tiene la titularidad sobre éste. PARÁGRAFO: en caso de queja o acción por parte de un tercero referente a los derechos de autor sobre el artículo, folleto o libro en cuestión, EL AUTOR, asumirá la responsabilidad total, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos, la Universidad Icesi actúa como un tercero de buena fe. Esta autorización, permite a la Universidad Icesi, de forma indefinida, para que en los términos establecidos en la Ley 23 de 1982, la Ley 44 de 1993, leyes y jurisprudencia vigente al respecto, haga publicación de este con fines educativos. Toda persona que consulte ya sea la biblioteca o en medio electrónico podrá copiar apartes del texto citando siempre la fuentes, es decir el título del trabajo y el autor.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.proposalSimulaciónspa
dc.subject.proposalAutomatización y sistemas de controlspa
dc.subject.proposalIngeniería de sistemas y comunicacionesspa
dc.subject.proposalTelecomunicacionesspa
dc.subject.proposalSystems engineeringeng
dc.subject.proposalTelecommunicationspa
dc.subject.proposalAutomation Command and control systemeng
dc.subject.proposalMuestreospa
dc.subject.proposalGestión de la informaciónspa
dc.subject.proposalSistemas de comunicacionesspa
dc.titleSimulation and analysis of compressed sensing technique as sampling and data compression and reconstruction of signals using convex programming
dc.type.coarhttp://purl.org/coar/resource_type/c_c94f
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.type.localDocumento de conferenciaspa
dc.type.versioninfo:eu-repo/semantics/publishedVersion

Archivos

Bloque original

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
documento.html
Tamaño:
294 B
Formato:
Hypertext Markup Language