Logo_Icesi
 

Incorporación de ingredientes cosméticos activos con funcionalidad para el skincare en films de biocelulosa bacteriana modificada para aplicación en rostro

dc.audienceTodo Público
dc.contributor.advisorPinillos Madrid, Juan Fernando
dc.contributor.authorÁlvarez Lenis, Alejandra
dc.contributor.authorEscandón Sanclemente, Ana Sofía
dc.coverage.spatialCali de Lat: 03 24 00 N degrees minutes Lat: 3.4000 decimal degrees Long: 076 30 00 W degrees minutes Long: -76.5000 decimal degrees.
dc.date.accessioned2025-06-13T16:40:04Z
dc.date.available2025-06-13T16:40:04Z
dc.date.issued2024-12-10
dc.description.abstractLa celulosa vegetal es un compuesto utilizado ampliamente en el mercado cosmético, principalmente en las rutinas de skincare. Sin embargo, esta materia presenta inconvenientes durante su proceso de extracción debido a que se obtiene junto con compuestos como lignina, pectina o hemicelulosa. De este modo, se emplea como alternativa la celulosa bacteriana, la cual puede obtenerse de manera pura a través de las bacterias del género Acetobacter. Igualmente, se emplean métodos de modificación química covalente y no covalente para mejorar las capacidades físicas y químicas de la celulosa. Por consiguiente, se busca desarrollar una prueba de concepto y aproximación a la utilización de la celulosa bacteriana modificada como posible agente de liberación de compuestos de interés cosmético en una aplicación de mascarilla facial. Para llevar a cabo lo anterior, se modificó la celulosa bacteriana con alginato y quitosano, alginato y cloruro de calcio, quitosano, ácido láctico y ácido cítrico. De los anteriores se evaluó la capacidad de carga, dando mejor resultado el alginato y quitosano, y ácido cítrico con incrementos hasta de 16.04 y 10.87 veces de su peso inicial respectivamente. Así mismo, se realizó la incorporación de la vitamina C como ingrediente cosmético activo con propiedades antioxidantes. No obstante, los resultados para su liberación no fueron concluyentes debido a los métodos desarrollados. Para finalizar, se proyecta que la presente investigación tenga repercusiones en la industria cosmética, pues se puede emplear la celulosa bacteriana modificada en productos cosméticos como mascarillas faciales.spa
dc.description.abstractPlant cellulose is a compound widely used in the cosmetic market, mainly in skincare routines. However, this material presents inconveniences during its extraction process because it is obtained together with compounds such as lignin, pectin, or hemicellulose. Thus, bacterial cellulose is used as an alternative, which can be obtained purely through bacteria of the genus Acetobacter. Likewise, covalent and non-covalent chemical modification methods are employed to improve the physical and chemical capacities of cellulose. Therefore, the aim is to develop a proof of concept and an approach to the use of modified bacterial cellulose as a possible release agent for compounds of cosmetic interest in a facial mask application. To carry out the above, bacterial cellulose was modified with alginate and chitosan, alginate and calcium chloride, chitosan, lactic acid, and citric acid. The loading capacity of the aforementioned was evaluated, with alginate and chitosan, and citric acid giving the best results with increases of up to 16.04 and 10.87 times their initial weight respectively. Likewise, vitamin C was incorporated as an active cosmetic ingredient with antioxidant properties. However, the results for its release were not conclusive due to the methods developed. Finally, it is projected that this research will have repercussions in the cosmetic industry, as modified bacterial cellulose can be used in cosmetic products such as facial masks.eng
dc.description.degreelevelProfesional
dc.description.degreenameTrabajo de Grado para obtener el título del Programa de Química Farmacéutica
dc.description.tableofcontentsResumen ejecutivo -- 1. Introducción -- 2. Metodología -- 3. Resultados y discusión -- 4. Conclusiones -- 5. Agradecimientos -- 6. Referencias -- 7. Anexos
dc.format.extent38 páginas
dc.format.mediumDigital
dc.format.mimetypeapplication/pdf
dc.identifier.OLIBhttps://biblioteca2.icesi.edu.co/cgi-olib/?oid=365033
dc.identifier.instnameinstname:Universidad Icesi
dc.identifier.reponamereponame:Biblioteca Digital
dc.identifier.repourlrepourl:https://repository.icesi.edu.co/
dc.identifier.urihttps://hdl.handle.net/10906/130346
dc.language.isospa
dc.publisherUniversidad Icesi
dc.publisher.facultyBarberi de Ingeniería, Diseño y Ciencias Aplicadas
dc.publisher.placeSantiago de cali
dc.publisher.programQuímica Farmacéutica
dc.relation.references1. Mordor Intelligence. Tamaño del mercado de mascarillas y análisis de de participación tendencias de crecimiento y pronósticos (2024 - 2029). https://www.mordorintelligence.com/es/industry - reports/face - mask - market (2024).spa
dc.relation.references2. Esa, F., Masrinda, S. & Abd Rahman, N. Overview of Bacterial Cellulose Production and Application. Agriculture and Agricultural Science Procedia 2, 113 – 119 (2014).spa
dc.relation.references3. de Amorim, J. D. P. et al. Bacterial Cellulose as a Versatile Biomaterial for Wound Dressing Application. Molecules vol. 27 Preprint at https://doi.org/10.3390/molecules27175580 (2022).spa
dc.relation.references4. Kumar, V. et al. Efficient and economic process for the production of bacterial cellulose from isolated strain of Acetobacter pasteurianus of RSV - 4 bacterium. Bioresour Technol 275, 430 – 433 (2019).spa
dc.relation.references5. Esa, F., Tasirin, S. M. & Rahman, N. A. Overview of Bacterial Cellulose Production and Application. Agriculture and Agricultural Science Procedia 2, 113 – 119 (2014).spa
dc.relation.references6. Lahiri, D. et al. Bacterial Cellulose: Production, Characterization, and Application as Antimicrobial Agent. Int J Mol Sci 22, 12984 (2021).spa
dc.relation.references7. Soto, D. & Oliva, H. MÉTODOS PARA PREPARAR HIDROGELES QUÍMICOS Y FÍSICOS BASADOS EN ALMIDÓN: UNA REVISIÓN METHODS FOR PREPARATION OF CHEMICAL AND PHYSICAL HYDROGELS BASED ON STARCH. A REVIEW. Rev. LatinAm. Metal. Mat 32, 154 – 175 (2012).spa
dc.relation.references8. Aditya, T., Allain, J. P., Jaramillo, C. & Restrepo, A. M. Surface Modification of Bacterial Cellulose for Biomedical Applications. Int J Mol Sci 23, (2022).spa
dc.relation.references9. Martínez, M. Desarrollo y aplicaciones de hidrogeles para la administración y liberación modificada de fármacos. (Universitat de Valencia, Valencia, 2016).spa
dc.relation.references10. Blanco Parte, F. G. et al. Current progress on the production, modification, and applications of bacterial cellulose. Crit Rev Biotechnol 40, 397 – 414 (2020).spa
dc.relation.references11. Badshah, M. et al. Surface modification and evaluation of bacterial cellulose for drug delivery. Int J Biol Macromol 113, 526 – 533 (2018).spa
dc.relation.references12. Aditya, T., Allain, J. P., Jaramillo, C. & Restrepo, A. M. Surface Modification of Bacterial Cellulose for Biomedical Applications. International Journal of Molecular Sciences 2022, Vol. 23, Page 610 23, 610 (2022).spa
dc.relation.references13. AccuWeather. Previsión meteorológica para Cali, Valle del Cauca, Colombia | AccuWeather. https://www.accuweather.com/es/co/cali/111732/weather - forecast/111732.spa
dc.relation.references14. Salihu, R. et al. Catalyst - free crosslinking modification of nata - de - coco - based bacterial cellulose nanofibres using citric acid for biomedical applications. Polymers (Basel) 13, (2021).spa
dc.relation.references15. Chiaoprakobkij, N., Sanchavanakit, N., Subbalekha, K., Pavasant, P. & Phisalaphong, M. Characterization and biocompatibility of bacterial cellulose/alginate composite sponges with human keratinocytes and gingival fibroblasts. Carbohydr Polym 85, 548 – 553 (2011).spa
dc.relation.references16. Petrova, V. A. et al. Bacterial cellulose (Komagataeibacter rhaeticus) biocomposites and their cytocompatibility. Materials 13, 1 – 18 (2020).spa
dc.relation.references17. Ul - Islam, M., Khan, T. & Park, J. K. Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydr Polym 88, 596 – 603 (2012).spa
dc.relation.references18. Phomrak, S. & Phisalaphong, M. Lactic acid modified natural rubber - bacterial cellulose composites. Applied Sciences (Switzerland) 10, (2020).spa
dc.relation.references19. Haimer, E. et al. Loading of bacterial cellulose aerogels with bioactive compounds by antisolvent precipitation with supercritical carbon dioxide. in Macromolecular Symposia vol. 294 64 – 74 (2010).spa
dc.relation.references20. Yang, Q. et al. Improved thermal and mechanical properties of bacterial cellulose with the introduction of collagen. Cellulose 24, 3777 – 3787 (2017).spa
dc.relation.references21. Abidin, A. Z. & Graha, H. P. R. Thermal Characterization of Bacterial Cellulose/Polyvinyl Alcohol Nanocomposite. Adv Mat Res 1123, 303 – 307 (2015).spa
dc.relation.references22. Spectral Database for Organic Compounds SDBS. Alginic acid sodium salt - IR. https://sdbs.db.aist.go.jp/CompoundLanding.aspx?sdbsno=12067 https://sdbs.db.aist.go.jp/IrSpectralView.aspx?fname=NIDA19823&sdbsno=12067.spa
dc.relation.references23. Wiley Science Solutions. Algin - Spectrum (SpectraBase). https://spectrabase.com/compound/7a0RkCOe7OY https://spectrabase.com/spectrum/KprhUME6Vwg (2024).spa
dc.relation.references24. Munim, S. A., Saddique, M. T., Raza, Z. A. & Majeed, M. I. Fabrication of cellulose - mediated chitosan adsorbent beads and their surface chemical characterization. Polymer Bulletin 77, 183 – 196 (2020).spa
dc.relation.references25. Spectral Database for Organic Compounds SDBS. Citric Acid. https://sdbs.db.aist.go.jp/CompoundLanding.aspx?sdbsno=1995.spa
dc.relation.references26. Petrova, V. A. et al. Bacterial cellulose (Komagataeibacter rhaeticus) biocomposites and their cytocompatibility. Materials 13, 1 – 18 (2020).spa
dc.relation.references27. Salihu, R. et al. Catalyst - free crosslinking modification of nata - de - coco - based bacterial cellulose nanofibres using citric acid for biomedical applications. Polymers (Basel) 13, (2021).spa
dc.relation.references28. Hao, Y. et al. Influence of Crosslinking on Rheological Properties, Crystallization Behavior and Thermal Stability of Poly(lactic acid). Fibers and Polymers 23, 1763 – 1769 (2022).spa
dc.relation.references29. Castillo Martinez, F. A. et al. Lactic acid properties, applications and production: A review. Trends in Food Science and Technology vol. 30 70 – 83 Preprint at https://doi.org/10.1016/j.tifs.2012.11.007 (2013).spa
dc.relation.references30. Torgbo, S. & Sukyai, P. Biodegradation and thermal stability of bacterial cellulose as biomaterial: The relevance in biomedical applications. Polymer Degradation and Stability vol. 179 Preprint at https://doi.org/10.1016/j.polymdegradstab.2020.109232 (2020).spa
dc.relation.references31. Deng, L. et al. Double Cross - Linked Chitosan/Bacterial Cellulose Dressing with Self - Healable Ability. Gels 9, (2023).spa
dc.relation.references32. Dey, B., Jayaraman, S. & Balasubramanian, P. Investigating the effects of drying on the physical properties of Kombucha Bacterial Cellulose: Kinetic study and modeling approach. J Clean Prod 452, (2024).spa
dc.relation.references33. Zhu, Q. et al. Development of alginate - chitosan composite scaffold incorporation of bacterial cellulose for bone tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials 72, 296 – 307 (2023).spa
dc.relation.references34. Huang, X., Lee, C. S., Zhang, K., Alhamzani, A. G. & Hsiao, B. S. Sodium Alginate – Aldehyde Cellulose Nanocrystal Composite Hydrogel for Doxycycline and Other Tetracycline Removal. Nanomaterials 13, (2023).spa
dc.relation.references35. Yu, Q., Yang, L., Wang, S., Zhang, L. & Sun, D. Citric acid cross - linked regenerated bacterial cellulose as biodegradable and biocompatible film for food packaging. Preprint at https://doi.org/10.21203/rs.3.rs - 2704167/v1 (2023).spa
dc.relation.references36. Kumar, R., Kumari, P., Priyaragini, S. & Dinesh Kumar, K. Fabrication of poly lactic acid incorporated bacterial cellulose adhered flax fabric biocomposites. Biocatal Agric Biotechnol 21, (2019).spa
dc.relation.references37. Pacheco, G. et al. Bacterial cellulose skin masks — Properties and sensory tests. J Cosmet Dermatol 17, 840 – 847 (2018).spa
dc.relation.references38. Sulaeva, I., Henniges, U., Rosenau, T. & Potthast, A. Bacterial cellulose as a material for wound treatment: Properties and modifications: A review. Biotechnology Advances vol. 33 1547 – 1571 Preprint at https://doi.org/10.1016/j.biotechadv.2015.07.009 (2015).spa
dc.relation.references39. Guillarme, D. & Dong, M. UHPLC, Part II: Benefits. LCGC North America vol. 35 486 – 495 (2017).spa
dc.relation.references40. Bilgi, E. et al. Bacterial Cellulose Based Facial Mask With Antioxidant Property and High Moisturizing Capacity. Preprint at https://doi.org/10.21203/rs.3.rs - 438989/v1 (2021).spa
dc.relation.references41. Herbig, A. - L. & Renard, C. M. G. C. Factors that impact the stability of vitamin C at intermediate temperatures in a food matrix. 220, 444 – 451 (2017).spa
dc.relation.references42. Peña, A. & Pereda, R. Polímeros celulósicos y vinílicos en la formulación de matrices hidrofílicas: cinética de liberación y evaluación del modelo cinético. Acta Farmacéutica Bonaerense vol. 18 263 – 269 (1999).spa
dc.rightsEL AUTOR, expresa que la obra objeto de la presente autorización es original y la elaboró sin quebrantar ni suplantar los derechos de autor de terceros, y de tal forma, la obra es de su exclusiva autoría y tiene la titularidad sobre éste. PARÁGRAFO: en caso de queja o acción por parte de un tercero referente a los derechos de autor sobre el artículo, folleto o libro en cuestión, EL AUTOR, asumirá la responsabilidad total, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos, la Universidad Icesi actúa como un tercero de buena fe. Esta autorización, permite a la Universidad Icesi, de forma indefinida, para que en los términos establecidos en la Ley 23 de 1982, la Ley 44 de 1993, leyes y jurisprudencia vigente al respecto, haga publicación de este con fines educativos Todo persona que consulte ya sea la biblioteca o en medio electróico podrá copiar apartes del texto citando siempre la fuentes, es decir el título del trabajo y el autospa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.licenseAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.proposalCelulosa bacterianaspa
dc.subject.proposalSkincarespa
dc.subject.proposalModificacionesspa
dc.subject.proposalCovalentespa
dc.subject.proposalNo covalentespa
dc.subject.proposalBacterial celluloseeng
dc.subject.proposalSkincareeng
dc.subject.proposalModificationseng
dc.subject.proposalCovalenteng
dc.subject.proposalNon-covalenteng
dc.subject.proposalTrabajos de grado de Química Farmacéuticaspa
dc.titleIncorporación de ingredientes cosméticos activos con funcionalidad para el skincare en films de biocelulosa bacteriana modificada para aplicación en rostro
dc.typebachelor thesis
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.localTrabajo de grado
dc.type.versioninfo:eu-repo/semantics/publishedVersion

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
TG04030.pdf
Tamaño:
1.82 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: