Incorporación de ingredientes cosméticos activos con funcionalidad para el skincare en films de biocelulosa bacteriana modificada para aplicación en rostro
dc.audience | Todo Público | |
dc.contributor.advisor | Pinillos Madrid, Juan Fernando | |
dc.contributor.author | Álvarez Lenis, Alejandra | |
dc.contributor.author | Escandón Sanclemente, Ana Sofía | |
dc.coverage.spatial | Cali de Lat: 03 24 00 N degrees minutes Lat: 3.4000 decimal degrees Long: 076 30 00 W degrees minutes Long: -76.5000 decimal degrees. | |
dc.date.accessioned | 2025-06-13T16:40:04Z | |
dc.date.available | 2025-06-13T16:40:04Z | |
dc.date.issued | 2024-12-10 | |
dc.description.abstract | La celulosa vegetal es un compuesto utilizado ampliamente en el mercado cosmético, principalmente en las rutinas de skincare. Sin embargo, esta materia presenta inconvenientes durante su proceso de extracción debido a que se obtiene junto con compuestos como lignina, pectina o hemicelulosa. De este modo, se emplea como alternativa la celulosa bacteriana, la cual puede obtenerse de manera pura a través de las bacterias del género Acetobacter. Igualmente, se emplean métodos de modificación química covalente y no covalente para mejorar las capacidades físicas y químicas de la celulosa. Por consiguiente, se busca desarrollar una prueba de concepto y aproximación a la utilización de la celulosa bacteriana modificada como posible agente de liberación de compuestos de interés cosmético en una aplicación de mascarilla facial. Para llevar a cabo lo anterior, se modificó la celulosa bacteriana con alginato y quitosano, alginato y cloruro de calcio, quitosano, ácido láctico y ácido cítrico. De los anteriores se evaluó la capacidad de carga, dando mejor resultado el alginato y quitosano, y ácido cítrico con incrementos hasta de 16.04 y 10.87 veces de su peso inicial respectivamente. Así mismo, se realizó la incorporación de la vitamina C como ingrediente cosmético activo con propiedades antioxidantes. No obstante, los resultados para su liberación no fueron concluyentes debido a los métodos desarrollados. Para finalizar, se proyecta que la presente investigación tenga repercusiones en la industria cosmética, pues se puede emplear la celulosa bacteriana modificada en productos cosméticos como mascarillas faciales. | spa |
dc.description.abstract | Plant cellulose is a compound widely used in the cosmetic market, mainly in skincare routines. However, this material presents inconveniences during its extraction process because it is obtained together with compounds such as lignin, pectin, or hemicellulose. Thus, bacterial cellulose is used as an alternative, which can be obtained purely through bacteria of the genus Acetobacter. Likewise, covalent and non-covalent chemical modification methods are employed to improve the physical and chemical capacities of cellulose. Therefore, the aim is to develop a proof of concept and an approach to the use of modified bacterial cellulose as a possible release agent for compounds of cosmetic interest in a facial mask application. To carry out the above, bacterial cellulose was modified with alginate and chitosan, alginate and calcium chloride, chitosan, lactic acid, and citric acid. The loading capacity of the aforementioned was evaluated, with alginate and chitosan, and citric acid giving the best results with increases of up to 16.04 and 10.87 times their initial weight respectively. Likewise, vitamin C was incorporated as an active cosmetic ingredient with antioxidant properties. However, the results for its release were not conclusive due to the methods developed. Finally, it is projected that this research will have repercussions in the cosmetic industry, as modified bacterial cellulose can be used in cosmetic products such as facial masks. | eng |
dc.description.degreelevel | Profesional | |
dc.description.degreename | Trabajo de Grado para obtener el título del Programa de Química Farmacéutica | |
dc.description.tableofcontents | Resumen ejecutivo -- 1. Introducción -- 2. Metodología -- 3. Resultados y discusión -- 4. Conclusiones -- 5. Agradecimientos -- 6. Referencias -- 7. Anexos | |
dc.format.extent | 38 páginas | |
dc.format.medium | Digital | |
dc.format.mimetype | application/pdf | |
dc.identifier.OLIB | https://biblioteca2.icesi.edu.co/cgi-olib/?oid=365033 | |
dc.identifier.instname | instname:Universidad Icesi | |
dc.identifier.reponame | reponame:Biblioteca Digital | |
dc.identifier.repourl | repourl:https://repository.icesi.edu.co/ | |
dc.identifier.uri | https://hdl.handle.net/10906/130346 | |
dc.language.iso | spa | |
dc.publisher | Universidad Icesi | |
dc.publisher.faculty | Barberi de Ingeniería, Diseño y Ciencias Aplicadas | |
dc.publisher.place | Santiago de cali | |
dc.publisher.program | Química Farmacéutica | |
dc.relation.references | 1. Mordor Intelligence. Tamaño del mercado de mascarillas y análisis de de participación tendencias de crecimiento y pronósticos (2024 - 2029). https://www.mordorintelligence.com/es/industry - reports/face - mask - market (2024). | spa |
dc.relation.references | 2. Esa, F., Masrinda, S. & Abd Rahman, N. Overview of Bacterial Cellulose Production and Application. Agriculture and Agricultural Science Procedia 2, 113 – 119 (2014). | spa |
dc.relation.references | 3. de Amorim, J. D. P. et al. Bacterial Cellulose as a Versatile Biomaterial for Wound Dressing Application. Molecules vol. 27 Preprint at https://doi.org/10.3390/molecules27175580 (2022). | spa |
dc.relation.references | 4. Kumar, V. et al. Efficient and economic process for the production of bacterial cellulose from isolated strain of Acetobacter pasteurianus of RSV - 4 bacterium. Bioresour Technol 275, 430 – 433 (2019). | spa |
dc.relation.references | 5. Esa, F., Tasirin, S. M. & Rahman, N. A. Overview of Bacterial Cellulose Production and Application. Agriculture and Agricultural Science Procedia 2, 113 – 119 (2014). | spa |
dc.relation.references | 6. Lahiri, D. et al. Bacterial Cellulose: Production, Characterization, and Application as Antimicrobial Agent. Int J Mol Sci 22, 12984 (2021). | spa |
dc.relation.references | 7. Soto, D. & Oliva, H. MÉTODOS PARA PREPARAR HIDROGELES QUÍMICOS Y FÍSICOS BASADOS EN ALMIDÓN: UNA REVISIÓN METHODS FOR PREPARATION OF CHEMICAL AND PHYSICAL HYDROGELS BASED ON STARCH. A REVIEW. Rev. LatinAm. Metal. Mat 32, 154 – 175 (2012). | spa |
dc.relation.references | 8. Aditya, T., Allain, J. P., Jaramillo, C. & Restrepo, A. M. Surface Modification of Bacterial Cellulose for Biomedical Applications. Int J Mol Sci 23, (2022). | spa |
dc.relation.references | 9. Martínez, M. Desarrollo y aplicaciones de hidrogeles para la administración y liberación modificada de fármacos. (Universitat de Valencia, Valencia, 2016). | spa |
dc.relation.references | 10. Blanco Parte, F. G. et al. Current progress on the production, modification, and applications of bacterial cellulose. Crit Rev Biotechnol 40, 397 – 414 (2020). | spa |
dc.relation.references | 11. Badshah, M. et al. Surface modification and evaluation of bacterial cellulose for drug delivery. Int J Biol Macromol 113, 526 – 533 (2018). | spa |
dc.relation.references | 12. Aditya, T., Allain, J. P., Jaramillo, C. & Restrepo, A. M. Surface Modification of Bacterial Cellulose for Biomedical Applications. International Journal of Molecular Sciences 2022, Vol. 23, Page 610 23, 610 (2022). | spa |
dc.relation.references | 13. AccuWeather. Previsión meteorológica para Cali, Valle del Cauca, Colombia | AccuWeather. https://www.accuweather.com/es/co/cali/111732/weather - forecast/111732. | spa |
dc.relation.references | 14. Salihu, R. et al. Catalyst - free crosslinking modification of nata - de - coco - based bacterial cellulose nanofibres using citric acid for biomedical applications. Polymers (Basel) 13, (2021). | spa |
dc.relation.references | 15. Chiaoprakobkij, N., Sanchavanakit, N., Subbalekha, K., Pavasant, P. & Phisalaphong, M. Characterization and biocompatibility of bacterial cellulose/alginate composite sponges with human keratinocytes and gingival fibroblasts. Carbohydr Polym 85, 548 – 553 (2011). | spa |
dc.relation.references | 16. Petrova, V. A. et al. Bacterial cellulose (Komagataeibacter rhaeticus) biocomposites and their cytocompatibility. Materials 13, 1 – 18 (2020). | spa |
dc.relation.references | 17. Ul - Islam, M., Khan, T. & Park, J. K. Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydr Polym 88, 596 – 603 (2012). | spa |
dc.relation.references | 18. Phomrak, S. & Phisalaphong, M. Lactic acid modified natural rubber - bacterial cellulose composites. Applied Sciences (Switzerland) 10, (2020). | spa |
dc.relation.references | 19. Haimer, E. et al. Loading of bacterial cellulose aerogels with bioactive compounds by antisolvent precipitation with supercritical carbon dioxide. in Macromolecular Symposia vol. 294 64 – 74 (2010). | spa |
dc.relation.references | 20. Yang, Q. et al. Improved thermal and mechanical properties of bacterial cellulose with the introduction of collagen. Cellulose 24, 3777 – 3787 (2017). | spa |
dc.relation.references | 21. Abidin, A. Z. & Graha, H. P. R. Thermal Characterization of Bacterial Cellulose/Polyvinyl Alcohol Nanocomposite. Adv Mat Res 1123, 303 – 307 (2015). | spa |
dc.relation.references | 22. Spectral Database for Organic Compounds SDBS. Alginic acid sodium salt - IR. https://sdbs.db.aist.go.jp/CompoundLanding.aspx?sdbsno=12067 https://sdbs.db.aist.go.jp/IrSpectralView.aspx?fname=NIDA19823&sdbsno=12067. | spa |
dc.relation.references | 23. Wiley Science Solutions. Algin - Spectrum (SpectraBase). https://spectrabase.com/compound/7a0RkCOe7OY https://spectrabase.com/spectrum/KprhUME6Vwg (2024). | spa |
dc.relation.references | 24. Munim, S. A., Saddique, M. T., Raza, Z. A. & Majeed, M. I. Fabrication of cellulose - mediated chitosan adsorbent beads and their surface chemical characterization. Polymer Bulletin 77, 183 – 196 (2020). | spa |
dc.relation.references | 25. Spectral Database for Organic Compounds SDBS. Citric Acid. https://sdbs.db.aist.go.jp/CompoundLanding.aspx?sdbsno=1995. | spa |
dc.relation.references | 26. Petrova, V. A. et al. Bacterial cellulose (Komagataeibacter rhaeticus) biocomposites and their cytocompatibility. Materials 13, 1 – 18 (2020). | spa |
dc.relation.references | 27. Salihu, R. et al. Catalyst - free crosslinking modification of nata - de - coco - based bacterial cellulose nanofibres using citric acid for biomedical applications. Polymers (Basel) 13, (2021). | spa |
dc.relation.references | 28. Hao, Y. et al. Influence of Crosslinking on Rheological Properties, Crystallization Behavior and Thermal Stability of Poly(lactic acid). Fibers and Polymers 23, 1763 – 1769 (2022). | spa |
dc.relation.references | 29. Castillo Martinez, F. A. et al. Lactic acid properties, applications and production: A review. Trends in Food Science and Technology vol. 30 70 – 83 Preprint at https://doi.org/10.1016/j.tifs.2012.11.007 (2013). | spa |
dc.relation.references | 30. Torgbo, S. & Sukyai, P. Biodegradation and thermal stability of bacterial cellulose as biomaterial: The relevance in biomedical applications. Polymer Degradation and Stability vol. 179 Preprint at https://doi.org/10.1016/j.polymdegradstab.2020.109232 (2020). | spa |
dc.relation.references | 31. Deng, L. et al. Double Cross - Linked Chitosan/Bacterial Cellulose Dressing with Self - Healable Ability. Gels 9, (2023). | spa |
dc.relation.references | 32. Dey, B., Jayaraman, S. & Balasubramanian, P. Investigating the effects of drying on the physical properties of Kombucha Bacterial Cellulose: Kinetic study and modeling approach. J Clean Prod 452, (2024). | spa |
dc.relation.references | 33. Zhu, Q. et al. Development of alginate - chitosan composite scaffold incorporation of bacterial cellulose for bone tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials 72, 296 – 307 (2023). | spa |
dc.relation.references | 34. Huang, X., Lee, C. S., Zhang, K., Alhamzani, A. G. & Hsiao, B. S. Sodium Alginate – Aldehyde Cellulose Nanocrystal Composite Hydrogel for Doxycycline and Other Tetracycline Removal. Nanomaterials 13, (2023). | spa |
dc.relation.references | 35. Yu, Q., Yang, L., Wang, S., Zhang, L. & Sun, D. Citric acid cross - linked regenerated bacterial cellulose as biodegradable and biocompatible film for food packaging. Preprint at https://doi.org/10.21203/rs.3.rs - 2704167/v1 (2023). | spa |
dc.relation.references | 36. Kumar, R., Kumari, P., Priyaragini, S. & Dinesh Kumar, K. Fabrication of poly lactic acid incorporated bacterial cellulose adhered flax fabric biocomposites. Biocatal Agric Biotechnol 21, (2019). | spa |
dc.relation.references | 37. Pacheco, G. et al. Bacterial cellulose skin masks — Properties and sensory tests. J Cosmet Dermatol 17, 840 – 847 (2018). | spa |
dc.relation.references | 38. Sulaeva, I., Henniges, U., Rosenau, T. & Potthast, A. Bacterial cellulose as a material for wound treatment: Properties and modifications: A review. Biotechnology Advances vol. 33 1547 – 1571 Preprint at https://doi.org/10.1016/j.biotechadv.2015.07.009 (2015). | spa |
dc.relation.references | 39. Guillarme, D. & Dong, M. UHPLC, Part II: Benefits. LCGC North America vol. 35 486 – 495 (2017). | spa |
dc.relation.references | 40. Bilgi, E. et al. Bacterial Cellulose Based Facial Mask With Antioxidant Property and High Moisturizing Capacity. Preprint at https://doi.org/10.21203/rs.3.rs - 438989/v1 (2021). | spa |
dc.relation.references | 41. Herbig, A. - L. & Renard, C. M. G. C. Factors that impact the stability of vitamin C at intermediate temperatures in a food matrix. 220, 444 – 451 (2017). | spa |
dc.relation.references | 42. Peña, A. & Pereda, R. Polímeros celulósicos y vinílicos en la formulación de matrices hidrofílicas: cinética de liberación y evaluación del modelo cinético. Acta Farmacéutica Bonaerense vol. 18 263 – 269 (1999). | spa |
dc.rights | EL AUTOR, expresa que la obra objeto de la presente autorización es original y la elaboró sin quebrantar ni suplantar los derechos de autor de terceros, y de tal forma, la obra es de su exclusiva autoría y tiene la titularidad sobre éste. PARÁGRAFO: en caso de queja o acción por parte de un tercero referente a los derechos de autor sobre el artículo, folleto o libro en cuestión, EL AUTOR, asumirá la responsabilidad total, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos, la Universidad Icesi actúa como un tercero de buena fe. Esta autorización, permite a la Universidad Icesi, de forma indefinida, para que en los términos establecidos en la Ley 23 de 1982, la Ley 44 de 1993, leyes y jurisprudencia vigente al respecto, haga publicación de este con fines educativos Todo persona que consulte ya sea la biblioteca o en medio electróico podrá copiar apartes del texto citando siempre la fuentes, es decir el título del trabajo y el auto | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.license | Attribution-NonCommercial-NoDerivatives 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.proposal | Celulosa bacteriana | spa |
dc.subject.proposal | Skincare | spa |
dc.subject.proposal | Modificaciones | spa |
dc.subject.proposal | Covalente | spa |
dc.subject.proposal | No covalente | spa |
dc.subject.proposal | Bacterial cellulose | eng |
dc.subject.proposal | Skincare | eng |
dc.subject.proposal | Modifications | eng |
dc.subject.proposal | Covalent | eng |
dc.subject.proposal | Non-covalent | eng |
dc.subject.proposal | Trabajos de grado de Química Farmacéutica | spa |
dc.title | Incorporación de ingredientes cosméticos activos con funcionalidad para el skincare en films de biocelulosa bacteriana modificada para aplicación en rostro | |
dc.type | bachelor thesis | |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.local | Trabajo de grado | |
dc.type.version | info:eu-repo/semantics/publishedVersion |