Identificación In - silico e In - vitro de genes housekeeping en raíces de Cecropia angustifolia
dc.audience | Todo Público | |
dc.contributor.advisor | Vivas Moncayo, Juan Esteban | |
dc.contributor.advisor | Montoya Peláez, Guillermo León | |
dc.contributor.author | Bacca Jaramillo, Laura Nathalia | |
dc.coverage.spatial | Cali de Lat: 03 24 00 N degrees minutes Lat: 3.4000 decimal degrees Long: 076 30 00 W degrees minutes Long: -76.5000 decimal degrees. | |
dc.date.accessioned | 2025-06-16T13:51:00Z | |
dc.date.available | 2025-06-16T13:51:00Z | |
dc.date.issued | 2024-06-12 | |
dc.description.abstract | In order to contribute to the exploitation of the chemical potential of diversity in the tropical region of the Colombian Andes, the natural products research laboratory at Icesi University has been working with Cecropia angustifolia, focusing special attention on its pentacyclic triterpene acids (TPAs), which are recognized as its chemotaxonomic markers. However, the metabolic pathways in this particular genus have not been studied in depth, so analyses of the enzymatic processes for the production of its metabolites must be based on models corresponding to different species. These models are inherently variable given the differences between each species and C. angustifolia. Therefore, a process of understanding the plant's metabolic processes must begin with the identification of housekeeping genes (HK) that can serve as biological markers and provide a reliable reference for comparing gene expression under different environmental conditions and/or tissues. Thus, the objective of this project was to evaluate the genes encoding the GAPDH, ACT, and TUB proteins as possible housekeeping genes, using bioinformatics tools, molecular techniques, and in vitro cultures of C. angustifolia root tissues. To achieve this objective, a literature review of the GAPDH, ACT, and TUB genes present in species taxonomically close to C. angustifolia was conducted. Then, specific primers for each gene were designed using different bioinformatics tools, followed by in vitro validation using mRNA extracted from C. angustifolia tissues. The obtained results were verified by Sanger sequencing, which found the presence of molybdopterin biosynthesis protein and the TUB gene (β - tubulin) in the tissue sample used. The results reported in the present investigation require further depth and serve as a basis for future research on the characterization of HK genes in C. angustifolia. | eng |
dc.description.abstract | Con el fin de realizar aportes al aprovechamiento del potencial químico de la diversidad en la región tropical de los andes colombianos, el laboratorio de investigación en productos naturales de la Universidad Icesi ha venido trabajando con Cecropia angustifolia y enfocando especial atención sobre sus triterpenos pentacíclicos ácidos (TPAs), los cuales son reconocidos como sus marcadores quimiotaxonómicos1. No obstante, las rutas metabólicas en este género en particular no han sido estudiadas a profundidad, por lo que los análisis de los procesos enzimáticos para la producción de sus metabolitos deben basarse en modelos correspondientes a especies distintas. Estos modelos son inherentemente variables dadas las diferencias entre cada especie y C. angustifolia. Por lo cual, un proceso de reconocimiento de los procesos metabólicos de la planta debe iniciar con la identificación de genes housekeeping (HK) que puedan servir como marcadores biológicos y proporcionar una referencia confiable para comparar la expresión génica en diferentes condiciones ambientales y/o tejidos. De este modo, el objetivo de este proyecto fue evaluar, los genes que codifican las proteínas GAPDH, ACT y TUB como posibles genes housekeeping, haciendo uso de herramientas bioinformáticas, técnicas moleculares y cultivos in vitro de tejidos radiculares de C. angustifolia. Para cumplir con este objetivo, se realizó una revisión bibliográfica de los genes GAPDH, ACT y TUB presentes en especies taxonómicamente cercanas a C. angustifolia, luego, empleando diferentes herramientas bioinformáticas se diseñaron primers específicos para cada gen para después realizar una validación in-vitro empleando mRNA extraído de tejidos de C. angustifolia. Los resultados obtenidos se verificaron mediante secuenciación Sanger, en la cual se encontró la presencia de proteina de biosíntesis de molidopterinasy del gen TUB (β-tubulina) en la muestra de tejido empleada. Los resultados reportados en la presente investigación requieren mayor profundización y sirven de base para futuras investigaciones sobre caracterización de genes HK en C. angustifolia. | spa |
dc.description.degreelevel | Profesional | |
dc.description.degreename | Trabajo de Grado para obtener el título del Programa de Química Farmacéutica | |
dc.description.tableofcontents | 1. RESUMEN EJECUTIVO . . . . 6 -- 2. INTRODUCCIÓN . . . . 6 -- 2.1. Gliceraldehído - 3 - fosfato deshidrogenasa (GAPDH) . . 8 -- 2.2. Actina (ACT) . . . . 9 -- 2.3. β - tubulina (TUB) . . . . 9 -- 3. METODOLOGÍA PROPUESTA . . . . 10 -- 3.1. Identificación de genes housekeeping y dominios conservados. . . 10 -- 3.2. Diseño de primers. . . . . 12 -- 3.3. Extracción de ARN . . . . 12 -- 3.4. PCR convencional . . . . 14 -- 3.5. Verificación de la identidad de los productos de PCR. . . 15 -- 4. RESULTADOS Y DISCUSIÓN . . . . 15 -- 4.1. Identificación de los mensajeros codificantes para C. angustifolia. . . 15 -- 4.2. Anotación funcional de genes . . . 16 -- 4.3. Descripción estructural de los mensajeros. . . . 18 -- 4.4. Diseño de primers mRNA específicos para los genes GAPDH -- ACT y TUB. . 20 -- 4.5. Extracción de mRNA. . . . . 22 -- 4.6 Verificación in - vitro. . . . . 23 -- 4.7. Secuenciación Sanger . . . . 25 -- 5. CONCLUSIONES . . . . 29 -- 6. AGRADECIMIENTOS . . . . 29 -- 7. REFERENCIAS BIBLIOGRÁFICAS . . . . 30 | spa |
dc.format.extent | 36 páginas | |
dc.format.medium | Digital | |
dc.format.mimetype | application/pdf | |
dc.identifier.OLIB | https://biblioteca2.icesi.edu.co/cgi-olib/?oid=365132 | |
dc.identifier.instname | instname:Universidad Icesi | |
dc.identifier.reponame | reponame:Biblioteca Digital | |
dc.identifier.repourl | repourl:https://repository.icesi.edu.co/ | |
dc.identifier.uri | https://hdl.handle.net/10906/130372 | |
dc.language.iso | spa | |
dc.publisher | Universidad Icesi | |
dc.publisher.faculty | Barberi de Ingeniería, Diseño y Ciencias Aplicadas | |
dc.publisher.place | Santiago de cali | |
dc.publisher.program | Química Farmacéutica | |
dc.relation.references | (1) Lodha, T. D.; Srinivas, A.; Sasikala, C.; Ramana, C. V. Hopanoid Inventory of Rhodoplanes Spp. Arch Microbiol 2015 , 197 (6), 861 – 867. https://doi.org/10.1007/S00203 - 015 - 1112 - 5. | spa |
dc.relation.references | (2) Huddart , J. E. A.; Crawford, A. J.; Luna - Tapia, A. L.; Restrepo, S.; Di Palma, F. EBP - Colombia and the Bioeconomy: Genomics in the Service of Biodiversity Conservation and Sustainable Development. Proc Natl Acad Sci U S A 2022 , 119 (4). https://doi.org/10.1073/PN AS.2115641119. | spa |
dc.relation.references | (3) Dietz, T.; Börner, J.; Förster, J. J.; von Braun, J. Governance of the Bioeconomy: A Global Comparative Study of National Bioeconomy Strategies. Sustainability 2018, Vol. 10, Page 3190 2018 , 10 (9), 3190. https://doi.org/10.3390/SU100931 90. | spa |
dc.relation.references | (4) Alzate, F.; Idárraga, A. Flora de Los Bosques Montanos de Medellin. | spa |
dc.relation.references | (5) Fazili, M. A.; Bashir, I.; Ahmad, M.; Yaqoob, U.; Geelani, S. N. In Vitro Strategies for the Enhancement of Secondary Metabolite Production in Plants: A Review. Bull Natl Res C ent 2022 , 46 (1). https://doi.org/10.1186/S42269 - 022 - 00717 - Z. | spa |
dc.relation.references | (6) Guerriero, G.; Berni, R.; Muñoz - Sanchez, J. A.; Apone, F.; Abdel - Salam, E. M.; Qahtan, A. A.; Alatar, A. A.; Cantini, C.; Cai, G.; Hausman, J. F.; Siddiqui, K. S.; Hernández - Sotomayor, S. M. T.; Faisal, M. Production of Plant Secondary Metabolites: Examples, Tips and Suggestions for Biotechnologists. Genes (Basel) 2018 , 9 (6), 309. https://doi.org/10.3390/GENES9060309. | spa |
dc.relation.references | (7) yarumo negro, yarumo, (Cecropia angustifolia) . https://catalogoarboles urbanos.eia.edu.co/species/184 (accessed 2024 - 05 - 31). | spa |
dc.relation.references | (8) Sandeep; Misra, R. C.; Chanotiya, C. S.; Mukhopadhyay, P.; Ghosh, S. Oxidosqualene Cyclase and CYP716 Enzymes Contribute to Triterpene Structural Diversity in the Medicinal Tree Banaba. New Phytol 2 019 , 222 (1), 408 – 424. https://doi.org/10.1111/NPH.15606. | spa |
dc.relation.references | (9) Krasteva, G.; Georgiev, V.; Pavlov, A. Recent Applications of Plant Cell Culture Technology in Cosmetics and Foods. Eng Life Sci 2021 , 21 (3 – 4), 68 – 76. https://doi.org/10.1002/ELSC.202000078. | spa |
dc.relation.references | (1 0) Ramakrishna, A.; Ravishankar, G. A. Influence of Abiotic Stress Signals on Secondary Metabolites in Plants. Plant Signal Behav 2011 , 6 (11), 1720. https://doi.org/10.4161/PSB.6.11.17613. | spa |
dc.relation.references | (11) Joshi, C. J.; Ke, W.; Drangowska - Way, A.; O’Rourke, E. J.; Le wis, N. E. What Are Housekeeping Genes? PLoS Comput Biol 2022 , 18 (7), e1010295. https://doi.org/10.1371/JOURNAL.PCBI.1010295. | spa |
dc.relation.references | (12) Rhee, S. Y.; Dickerson, J.; Xu, D. Bioinformatics and Its Applications in Plant Biology. Annu Rev Plant Biol 2006 , 57 , 335 – 3 60. https://doi.org/10.1146/ANNUREV.ARPLANT.56.032604.144103. | spa |
dc.relation.references | (13) Hounkpe, B. W.; Chenou, F.; de Lima, F.; de Paula, E. V. HRT Atlas v1.0 Database: Redefining Human and Mouse Housekeeping Genes and Candidate Reference Transcripts by Mining Massive RNA - Seq Datasets. Nucleic Acids Res 2021 , 49 (D1), D947 – D955. https://doi.org/10.1093/NAR/GKAA609. | spa |
dc.relation.references | (14) Eisenberg, E.; Levanon, E. Y. Human Housekeeping Genes, Revisited. Trends Genet 2013 , 29 (10), 569 – 574. https://doi.org/10.1016/J.TIG.2013.05.010. | spa |
dc.relation.references | (15) Yu , Y.; Zhang, G.; Chen, Y.; Bai, Q.; Gao, C.; Zeng, L.; Li, Z.; Cheng, Y.; Chen, J.; Sun, X.; Guo, L.; Xu, J.; Yan, Z. Selection of Reference Genes for QPCR Analyses of Gene Expression in Ramie Leaves and Roots across Eleven Abiotic/Biotic Treatments. Scien tific Reports 2019 9:1 2019 , 9 (1), 1 – 13. https://doi.org/10.1038/s41598 - 019 - 56640 - 3. | spa |
dc.relation.references | (16) Liang, W.; Zou, X.; Carballar - Lejarazú, R.; Wu, L.; Sun, W.; Yuan, X.; Wu, S.; Li, P.; Ding, H.; Ni, L.; Huang, W.; Zou, S. Selection and Evaluation of Reference Gen es for QRT - PCR Analysis in Euscaphis Konishii Hayata Based on Transcriptome Data. Plant Methods 2018 , 14 (1), 42. https://doi.org/10.1186/S13007 - 018 - 0311 - X. | spa |
dc.relation.references | (17) Yu, Y.; Zhang, G.; Chen, Y.; Bai, Q.; Gao, C.; Zeng, L.; Li, Z.; Cheng, Y.; Chen, J.; Sun, X.; Guo, L.; Xu, J.; Yan, Z. Selection of Reference Genes for QPCR Analyses of Gene Expression in Ramie Leaves and Roots across Eleven Abiotic/Biotic Treatments. Scientific Reports 2019 9:1 2019 , 9 (1), 1 – 13. https://doi.org/10.1038/s41598 - 019 - 56640 - 3. | spa |
dc.relation.references | (18) S irover, M. A. Structural Analysis of Glyceraldehyde - 3 - Phosphate Dehydrogenase Functional Diversity. Int J Biochem Cell Biol 2014 , 57 , 20 – 26. https://doi.org/10.1016/J.BIOCEL.2014.09.026. | spa |
dc.relation.references | (19) Nicholls, C.; Li, H.; Liu, J. P. GAPDH: A Common Enzyme with Unc ommon Functions. Clin Exp Pharmacol Physiol 2012 , 39 (8), 674 – 679. https://doi.org/10.1111/J.1440 - 1681.2011.05599.X. | spa |
dc.relation.references | (20) Tisdale, E. J.; Kelly, C.; Artalejo, C. E. Glyceraldehyde - 3 - Phosphate Dehydrogenase Interacts with Rab2 and Plays an Essential Role in Endoplasmic Reticulum to Golgi Transport Exclusive of Its Glycolytic Activity. J Biol Chem 2004 , 279 (52), 54046 – 54052. https://doi.org/10.1074/JBC.M409472200. | spa |
dc.relation.references | (21) Ikemoto, A.; Bole, D. G.; Ueda, T. Glycolysis and Glutamate Accumulation into Synaptic Ves icles. Role of Glyceraldehyde Phosphate Dehydrogenase and 3 - Phosphoglycerate Kinase. J Biol Chem 2003 , 278 (8), 5929 – 5940. https://doi.org/10.1074/JBC.M211617200. | spa |
dc.relation.references | (22) Hara, M. R.; Snyder, S. H. Nitric Oxide - GAPDH - Siah: A Novel Cell Death Cascade. Cell Mol Neurobiol 2006 , 26 (4 – 6), 527 – 538. https://doi.org/10.1007/S10571 - 006 - 9011 - 6. | spa |
dc.relation.references | (23) Šlajcherová, K.; Fišerová, J.; Fischer, L.; Schwarzerová, K. Multiple Actin Isotypes in Plants: Diverse Genes for Diverse Roles? Front Plant Sci 2012 , 3 (OCT). https://doi. org/10.3389/FPLS.2012.00226. | spa |
dc.relation.references | (24) Kato, T.; Morita, M. T.; Tasaka, M. Defects in Dynamics and Functions of Actin Filament in Arabidopsis Caused by the Dominant - Negative Actin Fiz1 - Induced Fragmentation of Actin Filament. Plant Cell Physiol 2010 , 51 (2), 33 3 – 338. https://doi.org/10.1093/PCP/PCP189. | spa |
dc.relation.references | (25) Takatsuka, H.; Higaki, T.; Umeda, M. Actin Reorganization Triggers Rapid Cell Elongation in Roots. Plant Physiol 2018 , 178 (3), 1130. https://doi.org/10.1104/PP.18.00557. | spa |
dc.relation.references | (26) Diao, M.; Huang, S. An Update on the Role of the Actin Cytoskeleton in Plasmodesmata: A Focus on Formins. Front Plant Sci 2021 , 12 , 647123. https://doi.org/10.3389/FPLS.2021.647123. | spa |
dc.relation.references | (27) Szymanski, D.; Staiger, C. J. The Actin Cytoskeleton: Functional Arrays for Cytoplasmic Organization and Cell Shape Control. Plant Physiol 2018 , 176 (1), 106 – 118. https://doi.org/10.1104/PP.17.01519. | spa |
dc.relation.references | (28) Paez - Garcia, A.; Sparks, J. A.; de Bang, L.; Blancaflor, E. B. Plant Actin Cytoskeleton: New Functions from Old Scaffold. Plant Cell Monographs 2018 , 23 , 103 – 137. https://doi.org/10.1007/978 - 3 - 319 - 69944 - 8_6. | spa |
dc.relation.references | (29) Paez - Garcia, A.; Sparks, J. A.; de Bang, L.; Blancaflor, E. B. Plant Actin Cytoskeleton: New Functions from Old Scaffold. Plant Cell Monographs 2018 , 23 , 103 – 137. https://doi.org/10.1007/978 - 3 - 319 - 69944 - 8_6. | spa |
dc.relation.references | (30) Radchuk, V. V. The Transcriptome Of The Tubulin Gene Family In Plants. 2008 , 219 – 241. https://doi.org/10.1007/978 - 1 - 4020 - 8843 - 8_11. | spa |
dc.relation.references | (31) Gavazzi, F.; Pigna, G.; Braglia, L.; Gianì, S.; Breviario, D.; Morell o, L. Evolutionary Characterization and Transcript Profiling of β - Tubulin Genes in Flax (Linum Usitatissimum L.) during Plant Development. BMC Plant Biol 2017 , 17 (1), 1 – 16. https://doi.org/10.1186/S12870 - 017 - 1186 - 0/FIGURES/8. | spa |
dc.relation.references | (32) Gasic, I. Regulation of Tubulin Gene Expression: From Isotype Identity to Functional Specialization. Front Cell Dev Biol 2022 , 10 , 898076. https://doi.org/10.3389/FCELL.2022.898076/BIBTEX. | spa |
dc.relation.references | (33) Gasic, I.; Mitchison, T. J. Autoregulation and Repair in Microtubule Homeostasis. Curr Opin Cell Biol 2019 , 56 , 80 – 87. https://doi.org/10.1016/J.CEB.2018.10.003. | spa |
dc.relation.references | (34) Yu, Y.; Zhang, G.; Chen, Y.; Bai, Q.; Gao, C.; Zeng, L.; Li, Z.; Cheng, Y.; Chen, J.; Sun, X.; Guo, L.; Xu, J.; Yan, Z. Selection of Reference Genes for QPCR Analyses of Gene Expression in Ramie Leaves and Roots across Eleven Abiotic/Biotic Treatments. Scientific Reports 2019 9:1 2019 , 9 (1), 1 – 13. https://doi.org/10.1038/s41598 - 019 - 56640 - 3. | spa |
dc.relation.references | (35) Ferguson, R. E.; Carroll, H. P.; Harris, A.; Maher, E. R.; Selby, P. J.; Banks, R. E. Housekeeping Proteins: A Preliminary Study Illustrating Some Limitations as Useful References in Protein 33 Expression Studies. Proteomics 2005 , 5 (2), 566 – 571. https://doi.org/10.1002/PMIC.200400941. | spa |
dc.relation.references | (36) Li, R.; Shen, Y. An Old Method Facing a New Chall enge: Re - Visiting Housekeeping Proteins as Internal Reference Control for Neuroscience Research. Life Sci 2013 , 92 (13), 747. https://doi.org/10.1016/J.LFS.2013.02.014. | spa |
dc.relation.references | (37) Hossain, M. S.; Ahmed, R.; Haque, M. S.; Alam, M. M.; Islam, M. S. Identification and Validation of Reference Genes for Real - Time Quantitative RT - PCR Analysis in Jute. BMC Mol Biol 2019 , 20 (1), 1 – 13. https://doi.org/10.1186/S12867 - 019 - 0130 - 2/FIGURES/6. | spa |
dc.relation.references | (38) Crossley, B. M.; Bai, J.; Glaser, A.; Maes , R.; Porter, E.; Killian, M. L.; Clement, T.; Toohey - Kurth, K. Guidelines for Sanger Sequencing and Molecular Assay Monitoring. J Vet Diagn Invest 2020 , 32 (6), 767 – 775. https://doi.org/10.1177/1040638720905833. | spa |
dc.relation.references | (39) Crossley, B. M.; Bai, J.; Glaser, A.; Maes, R.; Porter, E.; Killian, M. L.; Clement, T.; Toohey - Kurth, K. Guidelines for Sanger Sequencing and Molecular Assay Monitoring. Journal of Veterinary Diagnostic Investigation 2020 , 32 (6), 767 – 775. https://doi.org/10.1177/1040638720905833. | spa |
dc.relation.references | (40) Scienc eDirect.com | Science, health and medical journals, full text articles and books. https://www.sciencedirect.com/ (accessed 2024 - 05 - 31). | spa |
dc.relation.references | (41) Nature . https://www.nature.com/ (accessed 2024 - 05 - 31). | spa |
dc.relation.references | (42) National Center for Biotechnology Information . https:// www.ncbi.nlm.nih.gov/ (accessed 2024 - 05 - 31). | spa |
dc.relation.references | (43) Batut, B.; van den Beek, M.; Doyle, M. A.; Soranzo, N. RNA - Seq Data Analysis in Galaxy. Methods Mol Biol 2021 , 2284 , 367 – 392. https://doi.org/10.1007/978 - 1 - 0716 - 1307 - 8_20. | spa |
dc.relation.references | (44) Chen, Y.; Ye, W.; Zhang, Y.; Xu, Y. High Speed BLASTN: An Accelerated MegaBLAST Search Tool. Nucleic Acids Res 2015 , 43 (16), 7762 – 7768. https://doi.org/10.1093/NAR/GKV784. | spa |
dc.relation.references | (45) Jacob, A.; Lancaster, J.; Buhler, J.; Harris, B.; Chamberlain, R. D. Mercury BLASTP: Accelerating Protein S equence Alignment. ACM Trans Reconfigurable Technol Syst 2008 , 1 (2), 1 – 44. https://doi.org/10.1145/1371579.1371581. | spa |
dc.relation.references | (46) Vivas, J. E. Análisis de La Expresión Génica y Metabólica Asociada Con La Acumulación de Metabolitos Secundarios Derivados de Triterpe nos Pentacíclicos Ácidos En Raíces de Cecropia Angustifolia., Universidad ICESI, Santiago de Cali, 2022. | spa |
dc.relation.references | (47) Cadena - Zamudio, J. D.; Nicasio - Torres, P.; Monribot - Villanueva, J. L.; Guerrero - Analco, J. A.; Ibarra - Laclette, E. Integrated Analysis of the Tra nscriptome and Metabolome of Cecropia Obtusifolia: A Plant with High Chlorogenic Acid Content Traditionally Used to Treat Diabetes Mellitus. Int J Mol Sci 2020 , 21 (20), 1 – 27. https://doi.org/10.3390/IJMS21207572. | spa |
dc.relation.references | (48) Okonechnikov, K.; Golosova, O.; Furso v, M.; Varlamov, A.; Vaskin, Y.; Efremov, I.; German Grehov, O. G.; Kandrov, D.; Rasputin, K.; Syabro, M.; Tleukenov, T. Unipro UGENE: A Unified 34 Bioinformatics Toolkit. Bioinformatics 2012 , 28 (8), 1166 – 1167. https://doi.org/10.1093/BIOINFORMATICS/BTS091. | spa |
dc.relation.references | (49) Wu, Z. Y.; Monro, A. K.; Milne, R. I.; Wang, H.; Yi, T. S.; Liu, J.; Li, D. Z. Molecular Phylogeny of the Nettle Family (Urticaceae) Inferred from Multiple Loci of Three Genomes and Extensive Generic Sampling. Mol Phylogenet Evol 2013 , 69 (3), 814 – 827 . https://doi.org/10.1016/J.YMPEV.2013.06.022. | spa |
dc.relation.references | (50) Wilmot - Dear, C. M.; Friis, I. The Old World Species of Pouzolzia (Urticaceae, Tribus Boehmerieae). A Taxonomic Revision. Nord J Bot 2004 , 24 (1), 5 – 111. https://doi.org/10.1111/J.1756 - 1051.2004.TB00825.X. | spa |
dc.relation.references | (51) Wood, D. E.; Lin, H.; Levy - Moonshine, A.; Swaminathan, R.; Chang, Y. C.; Anton, B. P.; Osmani, L.; Steffen, M.; Kasif, S.; Salzberg, S. L. Thousands of Missed Genes Found in Bacterial Genomes and Their Analysis with COMBREX. Biol Direct 2012 , 7 , 37. https://doi.org/10.1186/1745 - 6150 - 7 - 37. | spa |
dc.relation.references | (52) OneZoom: Pentapetalae . https://www.onezoom.org/life/@Pentapetalae=5316182?img=best_any&anim=flight#x764 ,y - 68,w0.8156 (accessed 2024 - 05 - 31). | spa |
dc.relation.references | (53) Geballe, A. P.; Morris, D. R. Initiation Codons within 5’ - Leaders of MRNAs as Regulators of Translation. Trends Biochem Sci 1994 , 19 (4), 159 – 164. https://doi.org/10.1016/0968 - 0004(94)90277 - 1. | spa |
dc.relation.references | (54) Babbitt, G. A.; Coppola, E. E.; Mortensen, J. S.; Ekeren, P. X.; Viola, C.; Goldblatt, D.; Hudson, A. O. Triplet - Based Codon Organization Optimizes the Impact of Synonymous Mutation on Nucleic Acid Molecular Dynamics. J Mol Evol 2018 , 86 (2), 91 – 102. https://doi.org/10.1007/S00239 - 018 - 9828 - X. | spa |
dc.relation.references | (55) Kute, P. M.; Soukarieh, O.; Tjeldnes, H.; Trégouët, D. A.; Valen, E. Small Open R eading Frames, How to Find Them and Determine Their Function. Front Genet 2022 , 12 , 796060. https://doi.org/10.3389/FGENE.2021.796060/BIBTEX. | spa |
dc.relation.references | (56) Oelschlaeger, P. Molecular Mechanisms and the Significance of Synonymous Mutations. Biomolecules 2024 , 14 (1) . https://doi.org/10.3390/BIOM14010132. | spa |
dc.relation.references | (57) Zaffagnini, M.; Fermani, S.; Costa, A.; Lemaire, S. D.; Trost, P. Plant Cytoplasmic GAPDH: Redox Post - Translational Modifications and Moonlighting Properties. Front Plant Sci 2013 , 4 (NOV). https://doi.org/10.33 89/FPLS.2013.00450. | spa |
dc.relation.references | (58) Ghosh, S. Triterpene Structural Diversification by Plant Cytochrome P450 Enzymes. Front Plant Sci 2017 , 8 , 295540. https://doi.org/10.3389/FPLS.2017.01886/BIBTEX. | spa |
dc.relation.references | (59) Degenerate primers: Design and use . https://www.qiagen.com/us/k nowledge - and - support/knowledge - hub/bench - guide/pcr/introduction/guidelines - for - degenerate - primer - design - and - use (accessed 2024 - 05 - 31). | spa |
dc.relation.references | (60) Kozera, B.; Rapacz, M. Reference Genes in Real - Time PCR. J Appl Genet 2013 , 54 (4), 391. https://doi.org/10.1007/S13 353 - 013 - 0173 - X. | spa |
dc.relation.references | (61) Zhu, J.; Zhang, L.; Li, W.; Han, S.; Yang, W.; Qi, L. Reference Gene Selection for Quantitative Real - Time PCR Normalization in Caragana Intermedia under Different Abiotic Stress Conditions. PLoS One 2013 , 8 (1). https://doi.org/10.1371 /JOURNAL.PONE.0053196. | spa |
dc.relation.references | (62) Gimeno, J.; Eattock, N.; Van Deynze, A.; Blumwald, E. Selection and Validation of Reference Genes for Gene Expression Analysis in Switchgrass (Panicum Virgatum) Using Quantitative Real - Time RT - PCR. PLoS One 2014 , 9 (3). https://doi.org/10.1371/JOURNAL.PONE.0091474. | spa |
dc.relation.references | (63) Huang, L.; Yan, H.; Jiang, X.; Yin, G.; Zhang, X.; Qi, X.; Zhang, Y.; Yan, Y.; Ma, X.; Peng, Y. Identification of Candidate Reference Genes in Perennial Ryegrass for Quantitative RT - PCR under Various Abiotic Stress Conditions. PLoS One 2014 , 9 (4). https://doi.org/10.1371/JOURNAL.PONE.0093724. | spa |
dc.relation.references | (64) Li, W.; Qian, Y. Q.; Han, L.; Liu, J. X.; Sun, Z. Y. Identification of Suitable Reference Genes in Buffalo Grass for Accurate Transcript Normalization unde r Various Abiotic Stress Conditions. Gene 2014 , 547 (1), 55 – 62. https://doi.org/10.1016/J.GENE.2014.06.015. | spa |
dc.relation.references | (65) Yang, Z.; Chen, Y.; Hu, B.; Tan, Z.; Huang, B. Identification and Validation of Reference Genes for Quantification of Target Gene Expression wi th Quantitative Real - Time PCR for Tall Fescue under Four Abiotic Stresses. PLoS One 2015 , 10 (3). https://doi.org/10.1371/JOURNAL.PONE.0119569. | spa |
dc.relation.references | (66) Jain, M.; Nijhawan, A.; Tyagi, A. K.; Khurana, J. P. Validation of Housekeeping Genes as Internal Control for Studying Gene Expression in Rice by Quantitative Real - Time PCR. Biochem Biophys Res Commun 2006 , 345 (2), 646 – 651. https://doi.org/10.1016/J.BBRC.2006.04.140. | spa |
dc.relation.references | (67) Kundu, A.; Patel, A.; Pal, A. Defining Reference Genes for QPCR Normalization to Study B iotic and Abiotic Stress Responses in Vigna Mungo. Plant Cell Rep 2013 , 32 (10), 1647 – 1658. https://doi.org/10.1007/S00299 - 013 - 1478 - 2. | spa |
dc.relation.references | (68) What are the differences between PCR, RT - PCR, qPCR, and RT - qPCR? - Enzo . https://www.enzo.com/note/what - are - the - diff erences - between - pcr - rt - pcr - qpcr - and - rt - qpcr/ (accessed 2024 - 05 - 31). | spa |
dc.relation.references | (69) Huggett, J.; Dheda, K.; Bustin, S.; Zumla, A. Real - Time RT - PCR Normalisation; Strategies and Considerations. Genes Immun 2005 , 6 (4), 279 – 284. https://doi.org/10.1038/SJ.GENE.6364190. | spa |
dc.relation.references | (70) Narsai, R.; Ivanova, A.; Ng, S.; Whelan, J. Defining Reference Genes in Oryza Sativa Using Organ, Development, Biotic and Abiotic Transcriptome Datasets. BMC Plant Biol 2010 , 10 . https://doi.org/10.1186/1471 - 2229 - 10 - 56. | spa |
dc.relation.references | (71) Xu, H.; Bao, J. D.; Dai, J. S.; Li, Y.; Zhu, Y. Genome - Wide Identification of New Reference Genes for QRT - PCR Normalization under High Temperature Stress in Rice Endosperm. PLoS One 2015 , 10 (11). https://doi.org/10.1371/JOURNAL.PONE.0142015. | spa |
dc.relation.references | (72) Zhang, C.; Fu, J.; Wang, Y.; Bao, Z.; Zhao, H. Identification of Suitable Reference Genes for Gene Expression Normalization in the Quantitative Real - Time PCR Analysis of Sweet 36 Osmanthus (Osmanthus Fragrans Lour.). PLoS One 2015 , 10 (8). https://doi.org/10.1371/JOURNAL.PONE.0136355. | spa |
dc.relation.references | (73) Z hou, Z.; Cong, P.; Tian, Y.; Zhu, Y. Using RNA - Seq Data to Select Reference Genes for Normalizing Gene Expression in Apple Roots. PLoS One 2017 , 12 (9). https://doi.org/10.1371/JOURNAL.PONE.0185288. | spa |
dc.relation.references | (74) Tejada - Jiménez, M.; Chamizo - Ampudia, A.; Galván, A.; Fernández, E.; Llamas, Á. Molybdenum Metabolism in Plants. Metallomics 2013 , 5 (9), 1191 – 1203. https://doi.org/10.1039/C3MT00078H. | spa |
dc.relation.references | (75) Examining Your BLAST Results . https://fundis.org/component/sppagebu ilder/41 - examining - your - blast - results (accessed 2024 - 05 - 31). | spa |
dc.relation.references | (76) Crossley, B. M.; Bai, J.; Glaser, A.; Maes, R.; Porter, E.; Killian, M. L.; Clement, T.; Toohey - Kurth, K. Guidelines for Sanger Sequencing and Molecular Assay Monitoring. J Vet Diagn Invest 2020 , 32 (6), 767 – 775. https://doi.org/10.1177/1040638720905833. | spa |
dc.relation.references | (77) Thermofisher Scientific. Sanger Sequencing by CE 1: Foundations . https://www.thermofisher.com/blog/behindthebench/sanger - sequencing - by - ce - 1 - found | spa |
dc.rights | EL AUTOR, expresa que la obra objeto de la presente autorización es original y la elaboró sin quebrantar ni suplantar los derechos de autor de terceros, y de tal forma, la obra es de su exclusiva autoría y tiene la titularidad sobre éste. PARÁGRAFO: en caso de queja o acción por parte de un tercero referente a los derechos de autor sobre el artículo, folleto o libro en cuestión, EL AUTOR, asumirá la responsabilidad total, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos, la Universidad Icesi actúa como un tercero de buena fe. Esta autorización, permite a la Universidad Icesi, de forma indefinida, para que en los términos establecidos en la Ley 23 de 1982, la Ley 44 de 1993, leyes y jurisprudencia vigente al respecto, haga publicación de este con fines educativos Todo persona que consulte ya sea la biblioteca o en medio electróico podrá copiar apartes del texto citando siempre la fuentes, es decir el título del trabajo y el auto | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.license | Attribution-NonCommercial-NoDerivatives 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.proposal | Cecropia angustifolia | spa |
dc.subject.proposal | Housekeeping | spa |
dc.subject.proposal | Expresión génica | spa |
dc.subject.proposal | GAPDH | spa |
dc.subject.proposal | ACT | spa |
dc.subject.proposal | Cecropia angustifolia | eng |
dc.subject.proposal | Housekeeping | eng |
dc.subject.proposal | Gene expression | eng |
dc.subject.proposal | GAPDH | eng |
dc.subject.proposal | ACT | eng |
dc.subject.proposal | Trabajos de grado de Química Farmacéutica | spa |
dc.title | Identificación In - silico e In - vitro de genes housekeeping en raíces de Cecropia angustifolia | spa |
dc.title.alternative | Identificación In - silico e In - vitro de genes housekeeping en raíces in - vitro de Cecropia angustifolia | spa |
dc.type | bachelor thesis | |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.local | Trabajo de grado | |
dc.type.version | info:eu-repo/semantics/publishedVersion |