Logo_Icesi
 

Modelo de procesamiento de lenguaje natural para detectar la tasa de éxito de un artículo sobre otro.

dc.contributor.advisorAristizábal Pinzón, Andrés Alberto
dc.contributor.authorOrdóñez Burbano, Jonatan
dc.contributor.authorLópez Sierra, Yesid Leonardo
dc.contributor.roleAsesor Tesis
dc.coverage.spatialCali de Lat: 03 24 00 N degrees minutes Lat: 3.4000 decimal degrees Long: 076 30 00 W degrees minutes Long: -76.5000 decimal degrees.
dc.date.accessioned2021-10-16T07:35:12Z
dc.date.available2021-01-01
dc.date.available2021-10-16T07:35:12Z
dc.date.issued2021-01-01
dc.description.abstractMuchas personas comparten actualmente noticias, enlaces o videos a familiares y amigos, sin ser conscientes del impacto que pueden tener en las decisiones o forma de actuar de las personas. Un ejemplo claro, que recientemente se ha vivido en Colombia, corresponde al paro nacional que está sucediendo al momento de la entrega de esta tesis. Los colombianos han vivido como las noticias inducen a las masas a tomar decisiones que afectan el ambiente político social y económico del país. También se ha visto como las noticias pueden llegar a generar miedo en el pueblo, o incluso, a desinformarlo en el caso de las noticias falsas. Por estas razones resulta muy importante determinar el impacto que puede tener una noticia. El problema planteado radica en la inexistencia de una manera de predecir el impacto que puede tener una noticia para una comunidad de usuarios. Por lo tanto, el objetivo consiste en implementar un modelo de aprendizaje automático que permita predecir, con la mejor fidelidad posible, la viralidad de artículos en línea. Para esto se utilizó una metodología enfocada a proyectos de aprendizaje automático denominada CRISP-DM. Dado que este proyecto fue una propuesta de investigadores en Barcelona, la forma en que se valida este trabajo es mediante una encuesta donde se comprueban los objetivos, hallazgos y resultados alcanzados, versus lo que ellos esperaban. Finalmente, se obtuvo como mejor resultado aquel correspondiente al modelo donde el núcleo de la arquitectura se basaba en un modelo pre entrenado, denominado BERT, el cual permitía predecir, para una pareja de títulos de noticias, si el primer título sería más viral que el segundo.spa
dc.format.extent41 páginas
dc.format.mediumDigital
dc.format.mimetypeapplication/pdf
dc.identifier.OLIBhttp://biblioteca2.icesi.edu.co/cgi-olib?oid=327230
dc.identifier.other327230
dc.identifier.urihttp://hdl.handle.net/10906/89008
dc.language.isospa
dc.publisherUniversidad Icesi
dc.publisher.departmentDepartamento Tecnologías de Información y Comunicaciones
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeSantiago de Cali
dc.rightsEL AUTOR, expresa que la obra objeto de la presente autorización es original y la elaboró sin quebrantar ni suplantar los derechos de autor de terceros, y de tal forma, la obra es de su exclusiva autoría y tiene la titularidad sobre éste. PARÁGRAFO: en caso de queja o acción por parte de un tercero referente a los derechos de autor sobre el artículo, folleto o libro en cuestión, EL AUTOR, asumirá la responsabilidad total, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos, la Universidad Icesi actúa como un tercero de buena fe. Esta autorización, permite a la Universidad Icesi, de forma indefinida, para que en los términos establecidos en la Ley 23 de 1982, la Ley 44 de 1993, leyes y jurisprudencia vigente al respecto, haga publicación de este con fines educativos Todo persona que consulte ya sea la biblioteca o en medio electrónico podrá copiar apartes del texto citando siempre la fuentes, es decir el título del trabajo y el autor.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.proposalLenguaje naturalspa
dc.subject.proposalAprendizaje automáticospa
dc.subject.proposalModelos de aprendizajespa
dc.subject.proposalAprendizaje profundospa
dc.subject.proposalInteligencia artificialspa
dc.subject.proposalRedes neuronalesspa
dc.subject.proposalProcesamiento de la informaciónspa
dc.subject.proposalProcesamiento del lenguajespa
dc.subject.proposalAnálisis de la informaciónspa
dc.subject.proposalInformation analysisspa
dc.subject.proposalInformation processingspa
dc.subject.proposalRegistro de la informaciónspa
dc.subject.proposalInformation recordingspa
dc.subject.proposalArtículos científicosspa
dc.subject.proposalScientific articlesspa
dc.subject.proposalAprendizaje automático (Inteligencia artificial)spa
dc.subject.proposalMachine learningspa
dc.subject.proposalTésisspa
dc.subject.proposalIngenieríasspa
dc.subject.proposalDepartamento Tecnologías de Información y Comunicacionesspa
dc.titleModelo de procesamiento de lenguaje natural para detectar la tasa de éxito de un artículo sobre otro.
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.localTesis de maestría
dc.type.versioninfo:eu-repo/semantics/publishedVersion

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
T02228.pdf
Tamaño:
1.41 MB
Formato:
Adobe Portable Document Format