Efecto del metil jasmonato en la producción de los alcaloides galantamina y licorina en plantas de Zephyranthes carinata y Eucharis grandiflora cultivadas en un sistema de inmersión temporal
dc.audience | Todo Público | |
dc.contributor.audiovisualdesigner | Caicedo Burbano, Paola Andrea | |
dc.contributor.audiovisualdesigner | Buitrago González, María Eugenia | |
dc.contributor.author | Miranda Velasco, Luigy Alejandro | |
dc.coverage.spatial | Cali de Lat: 03 24 00 N degrees minutes Lat: 3.4000 decimal degrees Long: 076 30 00 W degrees minutes Long: -76.5000 decimal degrees. | |
dc.date.accessioned | 2025-03-12T15:19:25Z | |
dc.date.available | 2025-03-12T15:19:25Z | |
dc.date.issued | 2024-06-11 | |
dc.description.abstract | Las plantas de la familia Amaryllidaceae producen metabolitos secundarios de interés farmacéutico, conocidos como alcaloides . E ntre los alcaloides destacan la galantamina por su potencial uso como tratamiento frente a la enfermedad del Alzheimer, y la licorina por sus propiedades antitumorales y antivirales. En Colombia, las plantas de Zephyranthes carinata y Eucharis grandiflora (ambas pertenec ientes a la familia de las Amarilidáceas) son usadas principal mente como plantas ornamental es . Sin embargo, existe un creciente interés en identificar l a presencia de alcaloides en dichas plantas , al mismo tiempo que se investiga el uso de compuesto que estimulen la producción de alcaloides en las plantas, debido a que la producción natural de las plantas se da en baja s concentraciones . El objetivo de este trabajo es evaluar el efecto del metil jasmonato en la producción de galantamina y licorina en plantas de Zephyranthes carinata y Eucharis grandiflora , cultivadas en un sistema de inmersión temporal (SIT). Para ello, se aplicó una concentración de 50 μM del elicitor metil jasmonato en dos periodos de cultivo ( 7 y 15 días). El crecimiento vegetal se evaluó en términos de longitud de hojas, raíces y acumulación de biomasa. La producción de alcaloides, licorina y galantamina, se determinó m ediante espectrofotometría UV. Los resultados obtenidos mostraron que el metil jasmonato incrementa significativamente la producción de los alcaloides estudiados, obteniéndose mejores resultados a los 15 días de elicitación en las plantas de Eucharis grandiflora . Sin embargo, se encontró que Zephyranthes carinata tiene una mejor respuesta en cuanto a medidas físicas en el cultivo en SIT. | spa |
dc.description.tableofcontents | Resumen -- Introducción -- Materiales y Métodos -- Resultados -- Discusión -- Conclusión -- Agradecimientos -- Referencias -- Anexos | |
dc.format.extent | 31 páginas | |
dc.format.mimetype | application/pdf | |
dc.identifier.OLIB | https://biblioteca2.icesi.edu.co/cgi-olib/?oid=363911 | |
dc.identifier.uri | https://hdl.handle.net/10906/130180 | |
dc.language.iso | spa | |
dc.publisher | Universidad Icesi | |
dc.publisher.faculty | Barberi de Ingeniería, Diseño y Ciencias Aplicadas | |
dc.publisher.place | Santiago de Cali | |
dc.publisher.program | Biología | |
dc.relation.references | 1. Xu, Z. & Chang, L. Amaryllidaceae. Identification and Control of Common Weeds: Volume 3 877 – 889 (2017) doi:10.1007/978 - 981 - 10 - 5403 - 7_34. | spa |
dc.relation.references | 2. Nair, J. J., Bastida, J., Codina, C., Viladomat, F. & Van Staden, J. Alkaloids of the South African Amaryllidaceae: A Review. https://doi.org/10.1177/1934578X1300800938 8 , 1335 – 1350 (2013). | spa |
dc.relation.references | 3. CABEZAS Quimico, F. et al. Alcaloides y actividad biológica en eucharis amazonica, e. grandiflora, caliphruria subedentata y crinum kunthianum, especies colombianas de amaryllidaceae. Scientia et Technica, ISSN 0122 - 1701, Vol. 1, N o . 33, 2007, págs. 237 - 241 1 , 237 – 241 (2007). | spa |
dc.relation.references | 4. Masi, M. et al. Alkaloids isolated from Haemanthus humilis Jacq., an indigenous South African Amaryllidaceae: Anticancer activity of coccinine and montanine. South African Journal of Botany 126 , 277 – 281 (2019). | spa |
dc.relation.references | 5. He, M., Qu, C., Gao, O., Hu, X. & Hong, X. Biological and pharmacological activities of amaryllidaceae alkaloids. RSC Adv 5 , 16562 – 16574 (2015). | spa |
dc.relation.references | 6. Pellegrino, S. et al. The Amaryllidaceae Alkaloid Haemanthamine Binds the Eukaryotic Ribosome to Repress Cancer Cell Growth. Structure 26 , 416 - 425.e4 (2018). | spa |
dc.relation.references | 7. Zhang, P. et al. Lycorine inhibits melanoma cell migration and metastasis mainly through reducing intracellular levels of β - catenin and matrix metallopeptidase 9. J Cell Physiol 234 , 10566 – 10575 (2019). | spa |
dc.relation.references | 8. Leon, F. & Evidente, A. Advances on the Amaryllidacea Alkaloids Collected in South Africa, Andean South America and the Mediterranean Basin. Molecules 2023, Vol. 28, Page 4055 28 , 4055 (2023). | spa |
dc.relation.references | 9. Nair, J. J. & van Staden, J. Insight to the antifungal properties of Amaryllidaceae constituents. Phytomedicine 73 , 152753 (2020). | spa |
dc.relation.references | 10. Nair, J. J. & van Staden, J. Antiplasmodial constituents in the minor alkaloid groups of the Amaryllidaceae. South African Journal of Botany 126 , 362 – 370 (2019). | spa |
dc.relation.references | 11. Masi, M. et al. Sarniensine, a mesembrine - type alkaloid isolated from Nerine sarniensis, an indigenous South African Amaryllidaceae, with larvicidal and adulticidal activities against Aedes aegypti. Fitoterapia 116 , 34 – 38 (2017). | spa |
dc.relation.references | 12. Anjali et al. Role of plant secondary metabolites in defence and transcriptional regulation in response to biotic stress. Plant Stress 8 , 100154 (2023). | spa |
dc.relation.references | 13. Sharma, A., Sharma, S., Kumar, A., Kumar, V. & Sharma, A. K. Plant Secondary Metabolites: An Introduction of Their Chemistry and Biological Significance with Physicochemical Aspect. Plant Secondary Metabolites: Physico - Chemical Properties and Therapeutic Applications 1 – 45 (2022) doi:10.1007/978 - 981 - 16 - 4779 - 6_1/COVER. | spa |
dc.relation.references | 14. Martínez, J. F. Optimización de la producción de alcaloides en plantas de Zephyranthes carinata cultivadas in vitro en Sistemas de Inmersión Temporal. (Universidad Icesi, 2021). | spa |
dc.relation.references | 15. Dey, A., Bhattacharya, R., Mukherjee, A. & Pandey, D. K. Natural products against Alzheimer’s disease: Pharmaco - therapeutics and biotechnological interventions. Biotechnol Adv 35 , 178 – 216 (2017). | spa |
dc.relation.references | 16. Cortes, N., Sabogal - Guaqueta, A. M., Cardona - Gomez, G. P. & Osorio, E. Neuroprotection and improvement of the histopathological and behavioral impairments in a murine Alzheimer’s model treated with Zephyranthes carinata alkaloids. Biomedicine & Pharmacotherapy 110 , 482 – 492 (2019). | spa |
dc.relation.references | 17. Mukherjee, P. K., Kumar, V., Mal, M. & Houghton, P. J. Acetylcholinesterase inhibitors from plants. Phytomedicine 14 , 289 – 300 (2007). | spa |
dc.relation.references | 18. Chen, H. et al. Antiviral activity of lycorine against Zika virus in vivo and in vitro. Virology 546 , 88 – 97 (2020). | spa |
dc.relation.references | 19. Alzate, F. et al. Sinopsis de la familia Amaryllidaceae en Colombia. Biota Colomb 20 , 2 – 20 (2019). | spa |
dc.relation.references | 20. Dey, A., Bhattacharya, R., Mukherjee, A. & Pandey, D. K. Natural products against Alzheimer’s disease: Pharmaco - therapeutics and biotechnological interventions. Biotechnol Adv 35 , 178 – 216 (2017). | spa |
dc.relation.references | 21. Cortes, N., Sabogal - Guaqueta, A. M., Cardona - Gomez, G. P. & Osorio, E. Neuroprotection and improvement of the histopathological and behavioral impairments in a murine Alzheimer’s model treated with Zephyranthes carinata alkaloids. Biomedicine & Pharmacotherapy 110 , 482 – 492 (2019). | spa |
dc.relation.references | 22. Mukherjee, P. K., Kumar, V., Mal, M. & Houghton, P. J. Acetylcholinesterase inhibitors from plants. Phytomedicine 14 , 289 – 300 (2007). | spa |
dc.relation.references | 23. Cortes, N. et al. Neuroprotective activity and acetylcholinesterase inhibition of five Amaryllidaceae species: A comparative study. Life Sci 122 , 42 – 50 (2015). | spa |
dc.relation.references | 24. Katoch, D., Kumar, D., Padwad, Y. S., Singh, B. & Sharma, U. Pseudolycorine N - oxide, a new N - oxide from Narcissus tazetta. Nat Prod Res 34 , 2051 – 2058 (2020). | spa |
dc.relation.references | 25. Ka, S. et al. Gigantelline, gigantellinine and gigancrinine, cherylline - and crinine - type alkaloids isolated from Crinum jagus with anti - acetylcholinesterase activity. Phytochemistry 175 , 112390 (2020). | spa |
dc.relation.references | 26. Isah, T. Stress and defense responses in plant secondary metabolites production. Biological Research 2019 52:1 52 , 1 – 25 (2019). | spa |
dc.relation.references | 27. Ruan, X. et al. Optimization of Supercritical Fluid Extraction of Total Alkaloids, Peimisine, Peimine and Peiminine from the Bulb of Fritillaria thunbergii Miq , and Evaluation of Antioxidant Activities of the Extracts. Materials 2016, Vol. 9, Page 524 9 , 524 (2016). | spa |
dc.relation.references | 28. Yang, L. et al. Response of Plant Secondary Metabolites to Environmental Factors. Molecules 2018, Vol. 23, Page 762 23 , 762 (2018). | spa |
dc.relation.references | 29. Ptak, A. et al. Elicitation of galanthamine and lycorine biosynthesis by Leucojum aestivum L. and L. aestivum ‘Gravety Giant’ plants cultured in bioreactor RITA®. Plant Cell Tissue Organ Cult 128 , 335 – 345 (2017). | spa |
dc.relation.references | 30. Yue, W. et al. Medicinal plant cell suspension cultures: pharmaceutical applications and high - yielding strategies for the desired secondary metabolites. Crit Rev Biotechnol 36 , 215 – 232 (2016). | spa |
dc.relation.references | 31. Syeed, R. et al. Methyl Jasmonate Elicitation for In Vitro Lycorine Accumulation in Three Zephyranthes Species and Comparative Analysis of Tissue - Cultured and Field Grown Plants. Horticulturae 9 , 832 (2023). | spa |
dc.relation.references | 32. Chandran, H., Meena, M., Barupal, T. & Sharma, K. Plant tissue culture as a perpetual source for production of industrially important bioactive compounds. Biotechnology Reports 26 , e00450 (2020). | spa |
dc.relation.references | 33. Marchev, A. S., Yordanova, Z. P. & Georgiev, M. I. Green (cell) factories for advanced production of plant secondary metabolites. Crit Rev Biotechnol 40 , 443 – 458 (2020). | spa |
dc.relation.references | 34. Mett, V., Farrance, C. E., Green, B. J. & Yusibov, V. Plants as biofactories. Biologicals 36 , 354 – 358 (2008). | spa |
dc.relation.references | 35. Laurain - Mattar, D. & Ptak, A. Amaryllidaceae Alkaloid Accumulation by Plant In Vitro Systems. Reference Series in Phytochemistry 203 – 223 (2018) doi:10.1007/978 - 3 - 319 - 54600 - 1_4/COVER. | spa |
dc.relation.references | 36. Thakur, M., Bhattacharya, S., Khosla, P. K. & Puri, S. Improving production of plant secondary metabolites through biotic and abiotic elicitation. J Appl Res Med Aromat Plants 12 , 1 – 12 (2019). | spa |
dc.relation.references | 37. Wasternack, C. & Strnad, M. Jasmonates: News on Occurrence, Biosynthesis, Metabolism and Action of an Ancient Group of Signaling Compounds. International Journal of Molecular Sciences 2018, Vol. 19, Page 2539 19 , 2539 (2018). | spa |
dc.relation.references | 38. Ho, T. T., Murthy, H. N. & Park, S. Y. Methyl Jasmonate Induced Oxidative Stress and Accumulation of Secondary Metabolites in Plant Cell and Organ Cultures. Int J Mol Sci 21 , (2020). | spa |
dc.relation.references | 39. Zhao, J., Davis, L. C. & Verpoorte, R. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23 , 283 – 333 (2005). | spa |
dc.relation.references | 40. Alisandre Valverde, D. EVALUACIÓN DEL EFECTO DEL METIL JASMONATO Y EL ÁCIDO JASMÓNICO EN LA LIBERACIÓN DE ALCALOIDES PRODUCIDOS in vitro EN Zephyranthes carinata. (UNIVERSIDAD ICESI, SANTIAGO DE CALI, 2017). | spa |
dc.relation.references | 41. Bastida, J., Lavilla, R. & Viladomat, F. Chapter 3 Chemical and Biological Aspects of Narcissus Alkaloids. Alkaloids: Chemistry and Biology 63 , 87 – 179 (2006). | spa |
dc.relation.references | 42. Barragan Anzola, I. EVALUACIÓN DE LA PRODUCCIÓN IN VITRO DE ALCALOIDES A PARTIR DE BULBILLOS DE ZEPHYRANTHES CARINATA UTILIZANDO EL SISTEMA DE INMERSIÓN TEMPORAL. (Universidad ICESI, Santiago de cali, 2017). | spa |
dc.relation.references | 43. Kang, S. M. et al. Effects of methyl jasmonate and salicylic acid on the production of tropane alkaloids and the expression of PMT and H6H in adventitious root cultures of Scopolia parviflora. Plant Science 166 , 745 – 751 (2004). | spa |
dc.relation.references | 44. Murashige, T. & Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol Plant 15 , 473 – 497 (1962). | spa |
dc.relation.references | 45. Guerrero - Valencia, F. A. et al. Micropropagación del lirio amazónico (Eucharis grandiflora Planch . & Linden) mediante organogénesis directa. Polibotanica 0 , 141 – 153 (2021). | spa |
dc.relation.references | 46. Mendiburu, F. CRAN - Package agricolae. https://cran.r - project.org/web/packages/agricolae/index.html (2023). | spa |
dc.relation.references | 47. Colque, R., Viladomat, F., Bastida, J. & Codina, C. Improved production of galanthamine and related alkaloids by methyl jasmonate in Narcissus confusus shoot - clumps. Planta Med 70 , 1180 – 1188 (2004). | spa |
dc.relation.references | 48. Ptak, A. et al. Elicitation of galanthamine and lycorine biosynthesis by Leucojum aestivum L. and L. aestivum ‘Gravety Giant’ plants cultured in bioreactor RITA®. Plant Cell Tissue Organ Cult 128 , 335 – 345 (2017). | spa |
dc.relation.references | 49. Syeed, R. et al. Methyl Jasmonate Elicitation for In Vitro Lycorine Accumulation in Three Zephyranthes Species and Comparative Analysis of Tissue - Cultured and Field Grown Plants. Horticulturae 9 , 832 (2023). | spa |
dc.relation.references | 50. Li, Z., Liu, J., Ma, W. & Li, X. Characteristics, Roles and Applications of Proteinaceous Elicitors from Pathogens in Plant Immunity. Life 2023, Vol. 13, Page 268 13 , 268 (2023). | spa |
dc.relation.references | 51. Mu, H. mei et al. Effect of abiotic and biotic elicitors on growth and alkaloid accumulation of Lycoris chinensis seedlings. Z Naturforsch C J Biosci 64 , 541 – 550 (2009). | spa |
dc.relation.references | 52. Bokov , D. O. STANDARDIZATION OF SNOWDROP (GALANTHUS L.) HERBAL PHARMACEUTICAL SUBSTANCES BY UV - SPECTROPHOTOMETRY. Asian Journal of Pharmaceutical and Clinical Research 11 , 207 – 211 (2018). | spa |
dc.relation.references | 53. Numan Taspinar, Y. & Bulduk, İ. Alternative Analytical Methods for Quantification of Galantamine in Pharmaceuticals. Aegean Journal of Medical Sciences 5 , 58 – 64 (2022). | spa |
dc.relation.references | 54. Xu, S. et al. Identification and differential regulation of microRNAs in response to methyl jasmonate treatment in Lycoris aurea by deep sequencing. BMC Genomics 17 , 1 – 15 (2016). | spa |
dc.relation.references | 55. Ivanov, I., Georgiev, V., Georgiev, M., Ilieva, M. & Pavlov, A. Galanthamine and related alkaloids production by Leucojum aestivum L. shoot culture using a temporary immersion technology. Appl Biochem Biotechnol 163 , 268 – 277 (2011). | spa |
dc.relation.references | 56. Wang, R. et al. Transcriptome analysis of secondary metabolism pathway, transcription factors, and transporters in response to methyl jasmonate in Lycoris aurea. Front Plant Sci 7 , 234040 (2017). | spa |
dc.relation.references | 57. Ivanov, I., Georgiev, V. & Pavlov, A. Elicitation of galanthamine biosynthesis by Leucojum aestivum liquid shoot cultures. J Plant Physiol 170 , 1122 – 1129 (2013). | spa |
dc.relation.references | 58. Schumann, A. et al. Production of galanthamine by leucojum aestivum shoots grown in different bioreactor systems. Appl Biochem Biotechnol 167 , 1907 – 1920 (2012). | spa |
dc.rights | EL AUTOR, expresa que la obra objeto de la presente autorización es original y la elaboró sin quebrantar ni suplantar los derechos de autor de terceros, y de tal forma, la obra es de su exclusiva autoría y tiene la titularidad sobre éste. PARÁGRAFO: en caso de queja o acción por parte de un tercero referente a los derechos de autor sobre el artículo, folleto o libro en cuestión, EL AUTOR, asumirá la responsabilidad total, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos, la Universidad Icesi actúa como un tercero de buena fe. Esta autorización, permite a la Universidad Icesi, de forma indefinida, para que en los términos establecidos en la Ley 23 de 1982, la Ley 44 de 1993, leyes y jurisprudencia vigente al respecto, haga publicación de este con fines educativos Toda persona que consulte ya sea la biblioteca o en medio electrónico podrá copiar apartes del texto citando siempre la fuentes, es decir el título del trabajo y el autor. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | en |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.proposal | Licorina | spa |
dc.subject.proposal | Galantamina | spa |
dc.subject.proposal | Metil Jasmonato | spa |
dc.subject.proposal | Cultivos in vitro | spa |
dc.subject.proposal | Amarilidáceas | spa |
dc.subject.proposal | Lycorine | eng |
dc.subject.proposal | Galanthamine | eng |
dc.subject.proposal | Methyl Jasmonate | eng |
dc.subject.proposal | In vitro cultures | eng |
dc.subject.proposal | Amaryllidaceae | eng |
dc.subject.proposal | Trabajos de grado de Biología | spa |
dc.title | Efecto del metil jasmonato en la producción de los alcaloides galantamina y licorina en plantas de Zephyranthes carinata y Eucharis grandiflora cultivadas en un sistema de inmersión temporal | |
dc.type | bachelor thesis | |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.local | Trabajo de grado | |
dc.type.version | info:eu-repo/semantics/publishedVersion |