Logo_Icesi
 

Nanotecnología aplicada al diagnóstico y tratamiento del cáncer tipo carcinoma

dc.audienceTodo Público
dc.contributor.advisorPinillos Madrid, Juan Fernando
dc.contributor.authorHernandez Benitez, Natalia Andrea
dc.coverage.spatialCali de Lat: 03 24 00 N degrees minutes Lat: 3.4000 decimal degrees Long: 076 30 00 W degrees minutes Long: -76.5000 decimal degrees.
dc.date.accessioned2025-03-12T16:49:58Z
dc.date.available2025-03-12T16:49:58Z
dc.date.issued2024-06-11
dc.description.abstractEl cáncer es la segunda enfermedad con mayor índice de mortalidad a nivel mundial. Según las estimaciones mundiales proporcionadas por GLOBOCAN, se prevé que la incidencia del cáncer aumente significativamente para el año 2040, con una estimación de 30,2 millones de nuevos casos y 16,3 millones de muertes causadas por la enfermedad. Entre las medidas esenciales para garantizar un tratamiento más eficaz contra el cáncer se encuentran la identificación temprana de las células malignas, así como la administración de fármacos que posean una especificidad alta para minimizar las reacciones adversas. No obstante, todavía existen muchas limitaciones en la vigilancia, el diagnóstico y el tratamiento del cáncer como las altas toxicidades sistémicas, la aparición de mecanismos de resistencia, la farmacocinética deficiente, la baja eficiencia de administración de los medicamentos y la falta de métodos de diagnóstico temprano. Por lo tanto, puesto que el cáncer no es una única enfermedad, sino que cada tipo de cáncer se manifiesta de manera distinta, el campo de la medicina ha tenido que desarrollar urgentemente estrategias mejoradas e innovadoras para el diagnóstico temprano y tratamiento eficaz del cáncer, y la nanomedicina, se perfila como un enfoque terapéutico prometedor al poseer un inmenso potencial para revolucionar el campo del diagnóstico y la terapia del cáncer mediante la incorporación de materiales o dispositivos nanoestructurados como portadores de nanofármacos, sondas de diagnóstico, biosensores, plataformas de microfluidos y agentes de contraste para imágenes médicas. Palabras clave: Nanotecnología, cáncer tipo carcinoma, diagnóstico del cáncer, tratamiento del cáncer, marcadores moleculares.spa
dc.description.tableofcontentsResumen ejecutivo -- Introducción -- Nanotecnología -- Aplicaciones de la nanotecnología en el diagnóstico y tratamiento del cáncer -- Conclusiones -- Agradecimientos -- Referencias bibliográficasspa
dc.format.extent87 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.OLIBhttps://biblioteca2.icesi.edu.co/cgi-olib/?oid=363915
dc.identifier.urihttps://hdl.handle.net/10906/130184
dc.language.isospa
dc.publisherUniversidad Icesi
dc.publisher.facultyBarberi de Ingeniería, Diseño y Ciencias Aplicadas
dc.publisher.placeSantiago de Cali
dc.publisher.programBiología
dc.relation.referencesSakore, P., Bhattacharya, S., Belemkar, S., Prajapati, B. G. & Elossaily, G. M. The theranostic potential of green nanotechnology-enabled gold nanoparticles in cancer: A paradigm shift on diagnosis and treatment approaches. Results Chem 7 , 101264 (2024).spa
dc.relation.referencesInternational Agency for Research on Cancer. Cancer Tomorrow. Global Cancer Observatory https://gco.iarc.fr/tomorrow/en/dataviz/isotype (2020).spa
dc.relation.referencesDessale, M., Mengistu, G. & Mengist, H. M. Nanotechnology: A Promising Approach for Cancer Diagnosis, Therapeutics and Theragnosis. Int J Nanomedicine 17 , 3735–3749 (2022).spa
dc.relation.referencesU. S. National Institutes of Health & National Cancer Institute. SEER Training Modules, Cancer As a Disease. National Cancer Institute https://training.seer.cancer.gov/disease/categories/ (2023).spa
dc.relation.referencesKing, T. C. Neoplasia. Elsevier’s Integrated Pathology 111–143 (2007) doi:10.1016/B978-0-323-04328-1.50011-5.spa
dc.relation.referencesKe, W. et al. Trends and patterns in cancer nanotechnology research: A survey of NCI’s caNanoLab and nanotechnology characterization laboratory. Adv Drug Deliv Rev 191 , 114591 (2022).spa
dc.relation.referencesKemp, J. A. & Kwon, Y. J. Cancer nanotechnology: current status and perspectives. Nano Convergence 2021 8:1 8 , 1–38 (2021).spa
dc.relation.referencesAugustine, R. et al. Imaging cancer cells with nanostructures: Prospects of nanotechnology driven non-invasive cancer diagnosis. Adv Colloid Interface Sci 294 , 102457 (2021).spa
dc.relation.referencesAlrushaid, N., Khan, F. A., Al-Suhaimi, E. A. & Elaissari, A. Nanotechnology in Cancer Diagnosis and Treatment. Pharmaceutics 2023, Vol. 15, Page 1025 15 , 1025 (2023).spa
dc.relation.referencesU. S. National Institutes of Health & National Cancer Institute. Nanodelivery Systems and Devices, Cancer Nano-Therapies in the Clinic and Clinical Trials. National Cancer Institute https://www.cancer.gov/nano/cancer-nanotechnology/current-treatments (2023).spa
dc.relation.referencesZhang, Y., Li, M., Gao, X., Chen, Y. & Liu, T. Nanotechnology in cancer diagnosis: progress, challenges and opportunities. J Hematol Oncol 12 , (2019).spa
dc.relation.referencesPrajapati, B. G. & Bhattacharya, S. Editorial: Biomedical nanotechnology in cancer diagnostics and treatment. Frontiers in Nanotechnology 5 , 1208544 (2023).spa
dc.relation.referencesHashimoto, K., Nishimura, S., Ito, T., Oka, N. & Akagi, M. Limitations and usefulness of biopsy techniques for the diagnosis of metastatic bone and soft tissue tumors. Annals of Medicine and Surgery 68 , 102581 (2021).spa
dc.relation.referencesYe, F., Zhao, Y., El-Sayed, R., Muhammed, M. & Hassan, M. Advances in nanotechnology for cancer biomarkers. Nano Today 18 , 103–123 (2018).spa
dc.relation.referencesJin, C., Wang, K., Oppong-Gyebi, A. & Hu, J. Application of Nanotechnology in Cancer Diagnosis and Therapy - A Mini-Review. Int J Med Sci 17 , 2964 (2020).spa
dc.relation.referencesChehelgerdi, M. et al. Progressing nanotechnology to improve targeted cancer treatment: overcoming hurdles in its clinical implementation. Mol Cancer 22 , 169 (2023).spa
dc.relation.referencesSnyder, H. Literature review as a research methodology: An overview and guidelines. J Bus Res 104 , 333–339 (2019).spa
dc.relation.referencesSaini, R., Saini, S. & Sharma, S. Nanotechnology: The Future Medicine. J Cutan Aesthet Surg 3 , 32 (2010).spa
dc.relation.referencesPrasad, M., Buragohain, L., Ghosh, M. & Kumar, R. Nanotechnology in Cancer Diagnosis and Therapy. Handbook of Oxidative Stress in Cancer: Therapeutic Aspects: Volume 1 1 , 2779–2801 (2022).spa
dc.relation.referencesFernandes, Q. et al. Shrinking the battlefield in cancer therapy: Nanotechnology against cancer stem cells. European Journal of Pharmaceutical Sciences 191 , 106586 (2023).spa
dc.relation.referencesXia, Y., Xiong, Y., Lim, B. & Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angewandte Chemie - International Edition 48 , 60–103 (2009).spa
dc.relation.referencesPeer, D. et al. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2 , 751–760 (2007).spa
dc.relation.referencesEtzioni, R. et al. Overdiagnosis due to prostate-specific antigen screening: Lessons from U.S. prostate cancer incidence trends. J Natl Cancer Inst 94 , 981–990 (2002).spa
dc.relation.referencesSean Duffy & Charles Redman. Ovarian cancer: the recognition and initial management of ovarian cancer. National Collaborating Centre for Cancer (UK) (2011).spa
dc.relation.referencesCottet, V. et al. Low compliance with colonoscopic screening in first-degree relatives of patients with large adenomas. Aliment Pharmacol Ther 24 , 101–109 (2006).spa
dc.relation.referencesPass, H. I., Beer, D. G., Joseph, S. & Massion, P. Biomarkers and molecular testing for early detection, diagnosis, and therapeutic prediction of lung cancer. Thorac Surg Clin 23 , 211–224 (2013).spa
dc.relation.referencesPreedy, V. R. & Patel, V. B. Biomarkers in disease: Methods, discoveries and applications: Biomarkers in cancer. Biomarkers in Disease: Methods, Discoveries and Applications: Biomarkers in Cancer 1–992 (2015) doi:10.1007/978-94-007-7681-4/COVER.spa
dc.relation.referencesDanese, E. et al. Comparison of Genetic and Epigenetic Alterations of Primary Tumors and Matched Plasma Samples in Patients with Colorectal Cancer. PLoS One 10 , e0126417 (2015).spa
dc.relation.referencesDesai, A. N. & Jere, A. Next-Generation Sequencing for Cancer Biomarker Discovery. Next Generation Sequencing in Cancer Research, Volume 2: From Basepairs to Bedsides 103–125 (2015) doi:10.1007/978-3-319-15811-2_7.spa
dc.relation.referencesPatel, S. & Ahmed, S. Emerging field of metabolomics: Big promise for cancer biomarker identification and drug discovery. J Pharm Biomed Anal 107 , 63–74 (2015).spa
dc.relation.referencesShandilya, R. et al. Nanobiosensors: Point-of-care approaches for cancer diagnostics. Biosens Bioelectron 130 , 147–165 (2019).spa
dc.relation.referencesSingh, R. D. et al. Quantum dot based nano-biosensors for detection of circulating cell free miRNAs in lung carcinogenesis: From biology to clinical translation. Front Genet 9 , 616 (2018).spa
dc.relation.referencesCheng, Z., Li, M., Dey, R. & Chen, Y. Nanomaterials for cancer therapy: current progress and perspectives. Journal of Hematology & Oncology 2021 14:1 14 , 1–27 (2021).spa
dc.relation.referencesChen, Q., Ke, H., Dai, Z. & Liu, Z. Nanoscale theranostics for physical stimulus- responsive cancer therapies. Biomaterials 73 , 214–230 (2015).spa
dc.relation.referencesJardim, G. A. M. et al. Synthesis of Selenium-Quinone Hybrid Compounds with Potential Antitumor Activity via Rh-Catalyzed C-H Bond Activation and Click Reactions. Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry 23 , (2018).spa
dc.relation.referencesHanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144 , 646–674 (2011).spa
dc.relation.referencesHartshorn, C. M. et al. Nanotechnology Strategies To Advance Outcomes in Clinical Cancer Care. ACS Nano 12 , 24–43 (2018).spa
dc.relation.referencesAli, E. S. et al. Targeting cancer cells with nanotherapeutics and nanodiagnostics: Current status and future perspectives. Semin Cancer Biol 69 , 52–68 (2021).spa
dc.relation.referencesRosenblum, D., Joshi, N., Tao, W., Karp, J. M. & Peer, D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun 9 , (2018).spa
dc.relation.referencesBae, K. H., Chung, H. J. & Park, T. G. Nanomaterials for Cancer Therapy and Imaging. Mol Cells 31 , 295–302 (2011).spa
dc.relation.referencesGoldberg, M., Langer, R. & Jia, X. Nanostructured materials for applications in drug delivery and tissue engineering. J Biomater Sci Polym Ed 18 , 241–268 (2007).spa
dc.relation.referencesTang, A., Kopečková, P. & Kopeček, J. Binding and cytotoxicity of HPMA copolymer conjugates to lymphocytes mediated by receptor-binding epitopes. Pharm Res 20 , 360–367 (2003).spa
dc.relation.referencesMatsumura, Y. & Maeda, H. A New Concept for Macromolecular Therapeutics in Cancer Chemotherapy: Mechanism of Tumoritropic Accumulation of Proteins and the Antitumor Agent Smancs. Cancer Res 46 , 6387–6392 (1986).spa
dc.relation.referencesYuan, F. et al. Vascular Permeability in a Human Tumor Xenograft: Molecular Size Dependence and Cutoff Size. Cancer Res 55 , 3752–3756 (1995).spa
dc.relation.referencesMaeda, H. Tumor-selective delivery of macromolecular drugs via the EPR effect: Background and future prospects. Bioconjug Chem 21 , 797–802 (2010).spa
dc.relation.referencesShi, J., Kantoff, P. W., Wooster, R. & Farokhzad, O. C. Cancer nanomedicine: progress, challenges and opportunities. Nature Reviews Cancer 2016 17:1 17 , 20–37 (2016).spa
dc.relation.referencesGerlowski, L. E. & Jain, R. K. Microvascular permeability of normal and neoplastic tissues. Microvasc Res 31 , 288–305 (1986).spa
dc.relation.referencesBertrand, N., Wu, J., Xu, X., Kamaly, N. & Farokhzad, O. C. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 66 , 2–25 (2014).spa
dc.relation.referencesMaeda, H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv Drug Deliv Rev 91 , 3–6 (2015).spa
dc.relation.referencesHrkach, J. et al. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci Transl Med 4 , (2012).spa
dc.relation.referencesEliasof, S. et al. Correlating preclinical animal studies and human clinical trials of a multifunctional, polymeric nanoparticle. Proc Natl Acad Sci U S A 110 , 15127–15132 (2013).spa
dc.relation.referencesZuckerman, J. E. et al. Correlating animal and human phase Ia/Ib clinical data with CALAA-01, a targeted, polymer-based nanoparticle containing siRNA. Proc Natl Acad Sci U S A 111 , 11449–11454 (2014).spa
dc.relation.referencesBartlett, D. W. & Davis, M. E. Physicochemical and biological characterization of targeted, nucleic acid-containing nanoparticles. Bioconjug Chem 18 , 456–468 (2007).spa
dc.relation.referencesLee, H., Lee, K. & Tae, G. P. Hyaluronic acid-paclitaxel conjugate micelles: Synthesis, characterization, and antitumor activity. Bioconjug Chem 19 , 1319–1325 (2008).spa
dc.relation.referencesMontet, X., Funovics, M., Montet-Abou, K., Weissleder, R. & Josephson, L. Multivalent effects of RGD peptides obtained by nanoparticle display. J Med Chem 49 , 6087–6093 (2006).spa
dc.relation.referencesHong, S. et al. The Binding Avidity of a Nanoparticle-Based Multivalent Targeted Drug Delivery Platform. Chem Biol 14 , 107–115 (2007).spa
dc.relation.referencesLee, A. L. Z., Wang, Y., Cheng, H. Y., Pervaiz, S. & Yang, Y. Y. The co-delivery of paclitaxel and Herceptin using cationic micellar nanoparticles. Biomaterials 30 , 919–927 (2009).spa
dc.relation.referencesBae, K. H., Lee, Y. & Park, T. G. Oil-encapsulating PEO-PPO-PEO/PEG shell cross- linked nanocapsules for target-specific delivery of paclitaxel. Biomacromolecules 8 , 650–656 (2007).spa
dc.relation.referencesYi, S. W. et al. Stable lipiodolized emulsions for hepatoma targeting and treatment by transcatheter arterial chemoembolization. Journal of Controlled Release 50 , 135–143 (1998).spa
dc.relation.referencesHubbell, J. A. Enhancing drug function. Science (1979) 300 , 595–596 (2003).spa
dc.relation.referencesAllen, T. M. & Cullis, P. R. Drug Delivery Systems: Entering the Mainstream. Science (1979) 303 , 1818–1822 (2004).spa
dc.relation.referencesRivera Gil, P., Hühn, D., del Mercato, L. L., Sasse, D. & Parak, W. J. Nanopharmacy: Inorganic nanoscale devices as vectors and active compounds. Pharmacol Res 62 , 115–125 (2010).spa
dc.relation.referencesLee, S. H., Choi, S. H., Kim, S. H. & Park, T. G. Thermally sensitive cationic polymer nanocapsules for specific cytosolic delivery and efficient gene silencing of siRNA: Swelling induced physical disruption of endosome by cold shock. Journal of Controlled Release 125 , 25–32 (2008).spa
dc.relation.referencesKhan, I., Saeed, K. & Khan, I. Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry 12 , 908–931 (2019).spa
dc.relation.referencesIravani, S. Green synthesis of metal nanoparticles using plants. Green Chemistry 13 , 2638–2650 (2011).spa
dc.relation.referencesLu, H. et al. Modular and Integrated Systems for Nanoparticle and Microparticle Synthesis—A Review. Biosensors (Basel) 10 , (2020).spa
dc.relation.referencesEalias, A. M. & Saravanakumar, M. P. A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf Ser Mater Sci Eng 263 , 032019 (2017).spa
dc.relation.referencesXiao, J., Liu, P., Wang, C. X. & Yang, G. W. External field-assisted laser ablation in liquid: An efficient strategy for nanocrystal synthesis and nanostructure assembly. Prog Mater Sci 87 , 140–220 (2017).spa
dc.relation.referencesChan, H. K. & Kwok, P. C. L. Production methods for nanodrug particles using the bottom-up approach. Adv Drug Deliv Rev 63 , 406–416 (2011).spa
dc.relation.referencesNavya, P. N. & Daima, H. K. Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives. Nano Convergence 2016 3:1 3 , 1–14 (2016).spa
dc.relation.referencesNavya, P. N. et al. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Convergence 2019 6:1 6 , 1–30 (2019).spa
dc.relation.referencesSun, T. et al. Engineered Nanoparticles for Drug Delivery in Cancer Therapy. Angewandte Chemie International Edition 53 , 12320–12364 (2014).spa
dc.relation.referencesYue, J., Feliciano, T. J., Li, W., Lee, A. & Odom, T. W. Gold Nanoparticle Size and Shape Effects on Cellular Uptake and Intracellular Distribution of siRNA Nanoconstructs. Bioconjug Chem 28 , 1791–1800 (2017).spa
dc.relation.referencesHuang, K. et al. Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo. ACS Nano 6 , 4483–4493 (2012).spa
dc.relation.referencesLu, F., Wu, S. H., Hung, Y. & Mou, C. Y. Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small 5 , 1408–1413 (2009).spa
dc.relation.referencesChithrani, B. D., Ghazani, A. A. & Chan, W. C. W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6 , 662–668 (2006).spa
dc.relation.referencesDecuzzi, P. et al. Size and shape effects in the biodistribution of intravascularly injected particles. Journal of Controlled Release 141 , 320–327 (2010).spa
dc.relation.referencesHuang, X., Teng, X., Chen, D., Tang, F. & He, J. The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials 31 , 438–448 (2010).spa
dc.relation.referencesCho, E. C., Xie, J., Wurm, P. A. & Xia, Y. Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I 2/KI etchant. Nano Lett 9 , 1080–1084 (2009).spa
dc.relation.referencesHe, C., Hu, Y., Yin, L., Tang, C. & Yin, C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 31 , 3657–3666 (2010).spa
dc.relation.referencesXiao, K. et al. The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials 32 , 3435–3446 (2011).spa
dc.relation.referencesHarush-Frenkel, O., Debotton, N., Benita, S. & Altschuler, Y. Targeting of nanoparticles to the clathrin-mediated endocytic pathway. Biochem Biophys Res Commun 353 , 26–32 (2007).spa
dc.relation.referencesZhao, F. et al. Cellular Uptake, Intracellular Trafficking, and Cytotoxicity of Nanomaterials. Small 7 , 1322–1337 (2011).spa
dc.relation.referencesKrasnici, S. et al. Effect of the surface charge of liposomes on their uptake by angiogenic tumor vessels. Int J Cancer 105 , 561–567 (2003).spa
dc.relation.referencesCampbell, R. B. et al. Cationic Charge Determines the Distribution of Liposomes between the Vascular and Extravascular Compartments of Tumors 1.spa
dc.relation.referencesVillanueva, A. et al. The influence of surface functionalization on the enhanced internalization of magneticnanoparticles in cancer cells. Nanotechnology 20 , 115103 (2009).spa
dc.relation.referencesDu, J. Z., Du, X. J., Mao, C. Q. & Wang, J. Tailor-Made dual pH-sensitive polymer- doxorubicin nanoparticles for efficient anticancer drug delivery. J Am Chem Soc 133 , 17560–17563 (2011).spa
dc.relation.referencesYuan, Y. Y. et al. Surface Charge Switchable Nanoparticles Based on Zwitterionic Polymer for Enhanced Drug Delivery to Tumor. Advanced Materials 24 , 5476–5480 (2012).spa
dc.relation.referencesDaima, H. K. et al. Synergistic influence of polyoxometalate surface corona towards enhancing the antibacterial performance of tyrosine-capped Ag nanoparticles. Nanoscale 6 , 758–765 (2013).spa
dc.relation.referencesDaima, H. K., Selvakannan, P. R., Shukla, R., Bhargava, S. K. & Bansal, V. Fine-Tuning the Antimicrobial Profile of Biocompatible Gold Nanoparticles by Sequential Surface Functionalization Using Polyoxometalates and Lysine. PLoS One 8 , e79676 (2013).spa
dc.relation.referencesBagwe, R. P., Hilliard, L. R. & Tan, W. Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir 22 , 4357–4362 (2006).spa
dc.relation.referencesMout, R., Moyano, D. F., Rana, S. & Rotello, V. M. Surface functionalization of nanoparticles for nanomedicine. Chem Soc Rev 41 , 2539–2544 (2012).spa
dc.relation.referencesLaurent, S. et al. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations and biological applications. Chem Rev 108 , 2064–2110 (2008).spa
dc.relation.referencesKumar Sharma, T. et al. Aptamer-mediated ‘turn-off/turn-on’ nanozyme activity of gold nanoparticles for kanamycin detection. Chemical Communications 50 , 15856–15859 (2014).spa
dc.relation.referencesBoisselier, E. & Astruc, D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38 , 1759–1782 (2009).spa
dc.relation.referencesKulkarni, S. A. & Feng, S. S. Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery. Pharm Res 30 , 2512–2522 (2013).spa
dc.relation.referencesChung, Y. Il et al. The effect of surface functionalization of PLGA nanoparticles by heparin- or chitosan-conjugated Pluronic on tumor targeting. Journal of Controlled Release 143 , 374–382 (2010).spa
dc.relation.referencesPatil, Y. B., Toti, U. S., Khdair, A., Ma, L. & Panyam, J. Single-step surface functionalization of polymeric nanoparticles for targeted drug delivery. Biomaterials 30 , 859–866 (2009).spa
dc.relation.referencesWu, J. et al. Robust, responsive, and targeted PLGA anticancer nanomedicines by combination of reductively cleavable surfactant and covalent hyaluronic acid coating. ACS Appl Mater Interfaces 9 , 3985–3994 (2017).spa
dc.rightsEL AUTOR, expresa que la obra objeto de la presente autorización es original y la elaboró sin quebrantar ni suplantar los derechos de autor de terceros, y de tal forma, la obra es de su exclusiva autoría y tiene la titularidad sobre éste. PARÁGRAFO: en caso de queja o acción por parte de un tercero referente a los derechos de autor sobre el artículo, folleto o libro en cuestión, EL AUTOR, asumirá la responsabilidad total, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos, la Universidad Icesi actúa como un tercero de buena fe. Esta autorización, permite a la Universidad Icesi, de forma indefinida, para que en los términos establecidos en la Ley 23 de 1982, la Ley 44 de 1993, leyes y jurisprudencia vigente al respecto, haga publicación de este con fines educativos Toda persona que consulte ya sea la biblioteca o en medio electrónico podrá copiar apartes del texto citando siempre la fuentes, es decir el título del trabajo y el autor.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)en
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.proposalNanotecnologíaspa
dc.subject.proposalCáncer tipo carcinomaspa
dc.subject.proposalDiagnóstico del cáncerspa
dc.subject.proposalTratamiento del cáncerspa
dc.subject.proposalMarcadores molecularesspa
dc.subject.proposalNanotechnologyeng
dc.subject.proposalCarcinoma Cancereng
dc.subject.proposalCancer Diagnosiseng
dc.subject.proposalCancer Treatmenteng
dc.subject.proposalMolecular Markerseng
dc.subject.proposalTrabajos de grado de Biologíaspa
dc.titleNanotecnología aplicada al diagnóstico y tratamiento del cáncer tipo carcinomaspa
dc.typebachelor thesis
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.localTrabajo de grado
dc.type.versioninfo:eu-repo/semantics/publishedVersion

Archivos

Bloque original

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
TG03967.pdf
Tamaño:
1.17 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: