Nanotecnología aplicada al diagnóstico y tratamiento del cáncer tipo carcinoma
dc.audience | Todo Público | |
dc.contributor.advisor | Pinillos Madrid, Juan Fernando | |
dc.contributor.author | Hernandez Benitez, Natalia Andrea | |
dc.coverage.spatial | Cali de Lat: 03 24 00 N degrees minutes Lat: 3.4000 decimal degrees Long: 076 30 00 W degrees minutes Long: -76.5000 decimal degrees. | |
dc.date.accessioned | 2025-03-12T16:49:58Z | |
dc.date.available | 2025-03-12T16:49:58Z | |
dc.date.issued | 2024-06-11 | |
dc.description.abstract | El cáncer es la segunda enfermedad con mayor índice de mortalidad a nivel mundial. Según las estimaciones mundiales proporcionadas por GLOBOCAN, se prevé que la incidencia del cáncer aumente significativamente para el año 2040, con una estimación de 30,2 millones de nuevos casos y 16,3 millones de muertes causadas por la enfermedad. Entre las medidas esenciales para garantizar un tratamiento más eficaz contra el cáncer se encuentran la identificación temprana de las células malignas, así como la administración de fármacos que posean una especificidad alta para minimizar las reacciones adversas. No obstante, todavía existen muchas limitaciones en la vigilancia, el diagnóstico y el tratamiento del cáncer como las altas toxicidades sistémicas, la aparición de mecanismos de resistencia, la farmacocinética deficiente, la baja eficiencia de administración de los medicamentos y la falta de métodos de diagnóstico temprano. Por lo tanto, puesto que el cáncer no es una única enfermedad, sino que cada tipo de cáncer se manifiesta de manera distinta, el campo de la medicina ha tenido que desarrollar urgentemente estrategias mejoradas e innovadoras para el diagnóstico temprano y tratamiento eficaz del cáncer, y la nanomedicina, se perfila como un enfoque terapéutico prometedor al poseer un inmenso potencial para revolucionar el campo del diagnóstico y la terapia del cáncer mediante la incorporación de materiales o dispositivos nanoestructurados como portadores de nanofármacos, sondas de diagnóstico, biosensores, plataformas de microfluidos y agentes de contraste para imágenes médicas. Palabras clave: Nanotecnología, cáncer tipo carcinoma, diagnóstico del cáncer, tratamiento del cáncer, marcadores moleculares. | spa |
dc.description.tableofcontents | Resumen ejecutivo -- Introducción -- Nanotecnología -- Aplicaciones de la nanotecnología en el diagnóstico y tratamiento del cáncer -- Conclusiones -- Agradecimientos -- Referencias bibliográficas | spa |
dc.format.extent | 87 páginas | |
dc.format.mimetype | application/pdf | |
dc.identifier.OLIB | https://biblioteca2.icesi.edu.co/cgi-olib/?oid=363915 | |
dc.identifier.uri | https://hdl.handle.net/10906/130184 | |
dc.language.iso | spa | |
dc.publisher | Universidad Icesi | |
dc.publisher.faculty | Barberi de Ingeniería, Diseño y Ciencias Aplicadas | |
dc.publisher.place | Santiago de Cali | |
dc.publisher.program | Biología | |
dc.relation.references | Sakore, P., Bhattacharya, S., Belemkar, S., Prajapati, B. G. & Elossaily, G. M. The theranostic potential of green nanotechnology-enabled gold nanoparticles in cancer: A paradigm shift on diagnosis and treatment approaches. Results Chem 7 , 101264 (2024). | spa |
dc.relation.references | International Agency for Research on Cancer. Cancer Tomorrow. Global Cancer Observatory https://gco.iarc.fr/tomorrow/en/dataviz/isotype (2020). | spa |
dc.relation.references | Dessale, M., Mengistu, G. & Mengist, H. M. Nanotechnology: A Promising Approach for Cancer Diagnosis, Therapeutics and Theragnosis. Int J Nanomedicine 17 , 3735–3749 (2022). | spa |
dc.relation.references | U. S. National Institutes of Health & National Cancer Institute. SEER Training Modules, Cancer As a Disease. National Cancer Institute https://training.seer.cancer.gov/disease/categories/ (2023). | spa |
dc.relation.references | King, T. C. Neoplasia. Elsevier’s Integrated Pathology 111–143 (2007) doi:10.1016/B978-0-323-04328-1.50011-5. | spa |
dc.relation.references | Ke, W. et al. Trends and patterns in cancer nanotechnology research: A survey of NCI’s caNanoLab and nanotechnology characterization laboratory. Adv Drug Deliv Rev 191 , 114591 (2022). | spa |
dc.relation.references | Kemp, J. A. & Kwon, Y. J. Cancer nanotechnology: current status and perspectives. Nano Convergence 2021 8:1 8 , 1–38 (2021). | spa |
dc.relation.references | Augustine, R. et al. Imaging cancer cells with nanostructures: Prospects of nanotechnology driven non-invasive cancer diagnosis. Adv Colloid Interface Sci 294 , 102457 (2021). | spa |
dc.relation.references | Alrushaid, N., Khan, F. A., Al-Suhaimi, E. A. & Elaissari, A. Nanotechnology in Cancer Diagnosis and Treatment. Pharmaceutics 2023, Vol. 15, Page 1025 15 , 1025 (2023). | spa |
dc.relation.references | U. S. National Institutes of Health & National Cancer Institute. Nanodelivery Systems and Devices, Cancer Nano-Therapies in the Clinic and Clinical Trials. National Cancer Institute https://www.cancer.gov/nano/cancer-nanotechnology/current-treatments (2023). | spa |
dc.relation.references | Zhang, Y., Li, M., Gao, X., Chen, Y. & Liu, T. Nanotechnology in cancer diagnosis: progress, challenges and opportunities. J Hematol Oncol 12 , (2019). | spa |
dc.relation.references | Prajapati, B. G. & Bhattacharya, S. Editorial: Biomedical nanotechnology in cancer diagnostics and treatment. Frontiers in Nanotechnology 5 , 1208544 (2023). | spa |
dc.relation.references | Hashimoto, K., Nishimura, S., Ito, T., Oka, N. & Akagi, M. Limitations and usefulness of biopsy techniques for the diagnosis of metastatic bone and soft tissue tumors. Annals of Medicine and Surgery 68 , 102581 (2021). | spa |
dc.relation.references | Ye, F., Zhao, Y., El-Sayed, R., Muhammed, M. & Hassan, M. Advances in nanotechnology for cancer biomarkers. Nano Today 18 , 103–123 (2018). | spa |
dc.relation.references | Jin, C., Wang, K., Oppong-Gyebi, A. & Hu, J. Application of Nanotechnology in Cancer Diagnosis and Therapy - A Mini-Review. Int J Med Sci 17 , 2964 (2020). | spa |
dc.relation.references | Chehelgerdi, M. et al. Progressing nanotechnology to improve targeted cancer treatment: overcoming hurdles in its clinical implementation. Mol Cancer 22 , 169 (2023). | spa |
dc.relation.references | Snyder, H. Literature review as a research methodology: An overview and guidelines. J Bus Res 104 , 333–339 (2019). | spa |
dc.relation.references | Saini, R., Saini, S. & Sharma, S. Nanotechnology: The Future Medicine. J Cutan Aesthet Surg 3 , 32 (2010). | spa |
dc.relation.references | Prasad, M., Buragohain, L., Ghosh, M. & Kumar, R. Nanotechnology in Cancer Diagnosis and Therapy. Handbook of Oxidative Stress in Cancer: Therapeutic Aspects: Volume 1 1 , 2779–2801 (2022). | spa |
dc.relation.references | Fernandes, Q. et al. Shrinking the battlefield in cancer therapy: Nanotechnology against cancer stem cells. European Journal of Pharmaceutical Sciences 191 , 106586 (2023). | spa |
dc.relation.references | Xia, Y., Xiong, Y., Lim, B. & Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angewandte Chemie - International Edition 48 , 60–103 (2009). | spa |
dc.relation.references | Peer, D. et al. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2 , 751–760 (2007). | spa |
dc.relation.references | Etzioni, R. et al. Overdiagnosis due to prostate-specific antigen screening: Lessons from U.S. prostate cancer incidence trends. J Natl Cancer Inst 94 , 981–990 (2002). | spa |
dc.relation.references | Sean Duffy & Charles Redman. Ovarian cancer: the recognition and initial management of ovarian cancer. National Collaborating Centre for Cancer (UK) (2011). | spa |
dc.relation.references | Cottet, V. et al. Low compliance with colonoscopic screening in first-degree relatives of patients with large adenomas. Aliment Pharmacol Ther 24 , 101–109 (2006). | spa |
dc.relation.references | Pass, H. I., Beer, D. G., Joseph, S. & Massion, P. Biomarkers and molecular testing for early detection, diagnosis, and therapeutic prediction of lung cancer. Thorac Surg Clin 23 , 211–224 (2013). | spa |
dc.relation.references | Preedy, V. R. & Patel, V. B. Biomarkers in disease: Methods, discoveries and applications: Biomarkers in cancer. Biomarkers in Disease: Methods, Discoveries and Applications: Biomarkers in Cancer 1–992 (2015) doi:10.1007/978-94-007-7681-4/COVER. | spa |
dc.relation.references | Danese, E. et al. Comparison of Genetic and Epigenetic Alterations of Primary Tumors and Matched Plasma Samples in Patients with Colorectal Cancer. PLoS One 10 , e0126417 (2015). | spa |
dc.relation.references | Desai, A. N. & Jere, A. Next-Generation Sequencing for Cancer Biomarker Discovery. Next Generation Sequencing in Cancer Research, Volume 2: From Basepairs to Bedsides 103–125 (2015) doi:10.1007/978-3-319-15811-2_7. | spa |
dc.relation.references | Patel, S. & Ahmed, S. Emerging field of metabolomics: Big promise for cancer biomarker identification and drug discovery. J Pharm Biomed Anal 107 , 63–74 (2015). | spa |
dc.relation.references | Shandilya, R. et al. Nanobiosensors: Point-of-care approaches for cancer diagnostics. Biosens Bioelectron 130 , 147–165 (2019). | spa |
dc.relation.references | Singh, R. D. et al. Quantum dot based nano-biosensors for detection of circulating cell free miRNAs in lung carcinogenesis: From biology to clinical translation. Front Genet 9 , 616 (2018). | spa |
dc.relation.references | Cheng, Z., Li, M., Dey, R. & Chen, Y. Nanomaterials for cancer therapy: current progress and perspectives. Journal of Hematology & Oncology 2021 14:1 14 , 1–27 (2021). | spa |
dc.relation.references | Chen, Q., Ke, H., Dai, Z. & Liu, Z. Nanoscale theranostics for physical stimulus- responsive cancer therapies. Biomaterials 73 , 214–230 (2015). | spa |
dc.relation.references | Jardim, G. A. M. et al. Synthesis of Selenium-Quinone Hybrid Compounds with Potential Antitumor Activity via Rh-Catalyzed C-H Bond Activation and Click Reactions. Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry 23 , (2018). | spa |
dc.relation.references | Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144 , 646–674 (2011). | spa |
dc.relation.references | Hartshorn, C. M. et al. Nanotechnology Strategies To Advance Outcomes in Clinical Cancer Care. ACS Nano 12 , 24–43 (2018). | spa |
dc.relation.references | Ali, E. S. et al. Targeting cancer cells with nanotherapeutics and nanodiagnostics: Current status and future perspectives. Semin Cancer Biol 69 , 52–68 (2021). | spa |
dc.relation.references | Rosenblum, D., Joshi, N., Tao, W., Karp, J. M. & Peer, D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun 9 , (2018). | spa |
dc.relation.references | Bae, K. H., Chung, H. J. & Park, T. G. Nanomaterials for Cancer Therapy and Imaging. Mol Cells 31 , 295–302 (2011). | spa |
dc.relation.references | Goldberg, M., Langer, R. & Jia, X. Nanostructured materials for applications in drug delivery and tissue engineering. J Biomater Sci Polym Ed 18 , 241–268 (2007). | spa |
dc.relation.references | Tang, A., Kopečková, P. & Kopeček, J. Binding and cytotoxicity of HPMA copolymer conjugates to lymphocytes mediated by receptor-binding epitopes. Pharm Res 20 , 360–367 (2003). | spa |
dc.relation.references | Matsumura, Y. & Maeda, H. A New Concept for Macromolecular Therapeutics in Cancer Chemotherapy: Mechanism of Tumoritropic Accumulation of Proteins and the Antitumor Agent Smancs. Cancer Res 46 , 6387–6392 (1986). | spa |
dc.relation.references | Yuan, F. et al. Vascular Permeability in a Human Tumor Xenograft: Molecular Size Dependence and Cutoff Size. Cancer Res 55 , 3752–3756 (1995). | spa |
dc.relation.references | Maeda, H. Tumor-selective delivery of macromolecular drugs via the EPR effect: Background and future prospects. Bioconjug Chem 21 , 797–802 (2010). | spa |
dc.relation.references | Shi, J., Kantoff, P. W., Wooster, R. & Farokhzad, O. C. Cancer nanomedicine: progress, challenges and opportunities. Nature Reviews Cancer 2016 17:1 17 , 20–37 (2016). | spa |
dc.relation.references | Gerlowski, L. E. & Jain, R. K. Microvascular permeability of normal and neoplastic tissues. Microvasc Res 31 , 288–305 (1986). | spa |
dc.relation.references | Bertrand, N., Wu, J., Xu, X., Kamaly, N. & Farokhzad, O. C. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 66 , 2–25 (2014). | spa |
dc.relation.references | Maeda, H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv Drug Deliv Rev 91 , 3–6 (2015). | spa |
dc.relation.references | Hrkach, J. et al. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci Transl Med 4 , (2012). | spa |
dc.relation.references | Eliasof, S. et al. Correlating preclinical animal studies and human clinical trials of a multifunctional, polymeric nanoparticle. Proc Natl Acad Sci U S A 110 , 15127–15132 (2013). | spa |
dc.relation.references | Zuckerman, J. E. et al. Correlating animal and human phase Ia/Ib clinical data with CALAA-01, a targeted, polymer-based nanoparticle containing siRNA. Proc Natl Acad Sci U S A 111 , 11449–11454 (2014). | spa |
dc.relation.references | Bartlett, D. W. & Davis, M. E. Physicochemical and biological characterization of targeted, nucleic acid-containing nanoparticles. Bioconjug Chem 18 , 456–468 (2007). | spa |
dc.relation.references | Lee, H., Lee, K. & Tae, G. P. Hyaluronic acid-paclitaxel conjugate micelles: Synthesis, characterization, and antitumor activity. Bioconjug Chem 19 , 1319–1325 (2008). | spa |
dc.relation.references | Montet, X., Funovics, M., Montet-Abou, K., Weissleder, R. & Josephson, L. Multivalent effects of RGD peptides obtained by nanoparticle display. J Med Chem 49 , 6087–6093 (2006). | spa |
dc.relation.references | Hong, S. et al. The Binding Avidity of a Nanoparticle-Based Multivalent Targeted Drug Delivery Platform. Chem Biol 14 , 107–115 (2007). | spa |
dc.relation.references | Lee, A. L. Z., Wang, Y., Cheng, H. Y., Pervaiz, S. & Yang, Y. Y. The co-delivery of paclitaxel and Herceptin using cationic micellar nanoparticles. Biomaterials 30 , 919–927 (2009). | spa |
dc.relation.references | Bae, K. H., Lee, Y. & Park, T. G. Oil-encapsulating PEO-PPO-PEO/PEG shell cross- linked nanocapsules for target-specific delivery of paclitaxel. Biomacromolecules 8 , 650–656 (2007). | spa |
dc.relation.references | Yi, S. W. et al. Stable lipiodolized emulsions for hepatoma targeting and treatment by transcatheter arterial chemoembolization. Journal of Controlled Release 50 , 135–143 (1998). | spa |
dc.relation.references | Hubbell, J. A. Enhancing drug function. Science (1979) 300 , 595–596 (2003). | spa |
dc.relation.references | Allen, T. M. & Cullis, P. R. Drug Delivery Systems: Entering the Mainstream. Science (1979) 303 , 1818–1822 (2004). | spa |
dc.relation.references | Rivera Gil, P., Hühn, D., del Mercato, L. L., Sasse, D. & Parak, W. J. Nanopharmacy: Inorganic nanoscale devices as vectors and active compounds. Pharmacol Res 62 , 115–125 (2010). | spa |
dc.relation.references | Lee, S. H., Choi, S. H., Kim, S. H. & Park, T. G. Thermally sensitive cationic polymer nanocapsules for specific cytosolic delivery and efficient gene silencing of siRNA: Swelling induced physical disruption of endosome by cold shock. Journal of Controlled Release 125 , 25–32 (2008). | spa |
dc.relation.references | Khan, I., Saeed, K. & Khan, I. Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry 12 , 908–931 (2019). | spa |
dc.relation.references | Iravani, S. Green synthesis of metal nanoparticles using plants. Green Chemistry 13 , 2638–2650 (2011). | spa |
dc.relation.references | Lu, H. et al. Modular and Integrated Systems for Nanoparticle and Microparticle Synthesis—A Review. Biosensors (Basel) 10 , (2020). | spa |
dc.relation.references | Ealias, A. M. & Saravanakumar, M. P. A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf Ser Mater Sci Eng 263 , 032019 (2017). | spa |
dc.relation.references | Xiao, J., Liu, P., Wang, C. X. & Yang, G. W. External field-assisted laser ablation in liquid: An efficient strategy for nanocrystal synthesis and nanostructure assembly. Prog Mater Sci 87 , 140–220 (2017). | spa |
dc.relation.references | Chan, H. K. & Kwok, P. C. L. Production methods for nanodrug particles using the bottom-up approach. Adv Drug Deliv Rev 63 , 406–416 (2011). | spa |
dc.relation.references | Navya, P. N. & Daima, H. K. Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives. Nano Convergence 2016 3:1 3 , 1–14 (2016). | spa |
dc.relation.references | Navya, P. N. et al. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Convergence 2019 6:1 6 , 1–30 (2019). | spa |
dc.relation.references | Sun, T. et al. Engineered Nanoparticles for Drug Delivery in Cancer Therapy. Angewandte Chemie International Edition 53 , 12320–12364 (2014). | spa |
dc.relation.references | Yue, J., Feliciano, T. J., Li, W., Lee, A. & Odom, T. W. Gold Nanoparticle Size and Shape Effects on Cellular Uptake and Intracellular Distribution of siRNA Nanoconstructs. Bioconjug Chem 28 , 1791–1800 (2017). | spa |
dc.relation.references | Huang, K. et al. Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo. ACS Nano 6 , 4483–4493 (2012). | spa |
dc.relation.references | Lu, F., Wu, S. H., Hung, Y. & Mou, C. Y. Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small 5 , 1408–1413 (2009). | spa |
dc.relation.references | Chithrani, B. D., Ghazani, A. A. & Chan, W. C. W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6 , 662–668 (2006). | spa |
dc.relation.references | Decuzzi, P. et al. Size and shape effects in the biodistribution of intravascularly injected particles. Journal of Controlled Release 141 , 320–327 (2010). | spa |
dc.relation.references | Huang, X., Teng, X., Chen, D., Tang, F. & He, J. The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials 31 , 438–448 (2010). | spa |
dc.relation.references | Cho, E. C., Xie, J., Wurm, P. A. & Xia, Y. Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I 2/KI etchant. Nano Lett 9 , 1080–1084 (2009). | spa |
dc.relation.references | He, C., Hu, Y., Yin, L., Tang, C. & Yin, C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 31 , 3657–3666 (2010). | spa |
dc.relation.references | Xiao, K. et al. The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials 32 , 3435–3446 (2011). | spa |
dc.relation.references | Harush-Frenkel, O., Debotton, N., Benita, S. & Altschuler, Y. Targeting of nanoparticles to the clathrin-mediated endocytic pathway. Biochem Biophys Res Commun 353 , 26–32 (2007). | spa |
dc.relation.references | Zhao, F. et al. Cellular Uptake, Intracellular Trafficking, and Cytotoxicity of Nanomaterials. Small 7 , 1322–1337 (2011). | spa |
dc.relation.references | Krasnici, S. et al. Effect of the surface charge of liposomes on their uptake by angiogenic tumor vessels. Int J Cancer 105 , 561–567 (2003). | spa |
dc.relation.references | Campbell, R. B. et al. Cationic Charge Determines the Distribution of Liposomes between the Vascular and Extravascular Compartments of Tumors 1. | spa |
dc.relation.references | Villanueva, A. et al. The influence of surface functionalization on the enhanced internalization of magneticnanoparticles in cancer cells. Nanotechnology 20 , 115103 (2009). | spa |
dc.relation.references | Du, J. Z., Du, X. J., Mao, C. Q. & Wang, J. Tailor-Made dual pH-sensitive polymer- doxorubicin nanoparticles for efficient anticancer drug delivery. J Am Chem Soc 133 , 17560–17563 (2011). | spa |
dc.relation.references | Yuan, Y. Y. et al. Surface Charge Switchable Nanoparticles Based on Zwitterionic Polymer for Enhanced Drug Delivery to Tumor. Advanced Materials 24 , 5476–5480 (2012). | spa |
dc.relation.references | Daima, H. K. et al. Synergistic influence of polyoxometalate surface corona towards enhancing the antibacterial performance of tyrosine-capped Ag nanoparticles. Nanoscale 6 , 758–765 (2013). | spa |
dc.relation.references | Daima, H. K., Selvakannan, P. R., Shukla, R., Bhargava, S. K. & Bansal, V. Fine-Tuning the Antimicrobial Profile of Biocompatible Gold Nanoparticles by Sequential Surface Functionalization Using Polyoxometalates and Lysine. PLoS One 8 , e79676 (2013). | spa |
dc.relation.references | Bagwe, R. P., Hilliard, L. R. & Tan, W. Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir 22 , 4357–4362 (2006). | spa |
dc.relation.references | Mout, R., Moyano, D. F., Rana, S. & Rotello, V. M. Surface functionalization of nanoparticles for nanomedicine. Chem Soc Rev 41 , 2539–2544 (2012). | spa |
dc.relation.references | Laurent, S. et al. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations and biological applications. Chem Rev 108 , 2064–2110 (2008). | spa |
dc.relation.references | Kumar Sharma, T. et al. Aptamer-mediated ‘turn-off/turn-on’ nanozyme activity of gold nanoparticles for kanamycin detection. Chemical Communications 50 , 15856–15859 (2014). | spa |
dc.relation.references | Boisselier, E. & Astruc, D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38 , 1759–1782 (2009). | spa |
dc.relation.references | Kulkarni, S. A. & Feng, S. S. Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery. Pharm Res 30 , 2512–2522 (2013). | spa |
dc.relation.references | Chung, Y. Il et al. The effect of surface functionalization of PLGA nanoparticles by heparin- or chitosan-conjugated Pluronic on tumor targeting. Journal of Controlled Release 143 , 374–382 (2010). | spa |
dc.relation.references | Patil, Y. B., Toti, U. S., Khdair, A., Ma, L. & Panyam, J. Single-step surface functionalization of polymeric nanoparticles for targeted drug delivery. Biomaterials 30 , 859–866 (2009). | spa |
dc.relation.references | Wu, J. et al. Robust, responsive, and targeted PLGA anticancer nanomedicines by combination of reductively cleavable surfactant and covalent hyaluronic acid coating. ACS Appl Mater Interfaces 9 , 3985–3994 (2017). | spa |
dc.rights | EL AUTOR, expresa que la obra objeto de la presente autorización es original y la elaboró sin quebrantar ni suplantar los derechos de autor de terceros, y de tal forma, la obra es de su exclusiva autoría y tiene la titularidad sobre éste. PARÁGRAFO: en caso de queja o acción por parte de un tercero referente a los derechos de autor sobre el artículo, folleto o libro en cuestión, EL AUTOR, asumirá la responsabilidad total, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos, la Universidad Icesi actúa como un tercero de buena fe. Esta autorización, permite a la Universidad Icesi, de forma indefinida, para que en los términos establecidos en la Ley 23 de 1982, la Ley 44 de 1993, leyes y jurisprudencia vigente al respecto, haga publicación de este con fines educativos Toda persona que consulte ya sea la biblioteca o en medio electrónico podrá copiar apartes del texto citando siempre la fuentes, es decir el título del trabajo y el autor. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | en |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.proposal | Nanotecnología | spa |
dc.subject.proposal | Cáncer tipo carcinoma | spa |
dc.subject.proposal | Diagnóstico del cáncer | spa |
dc.subject.proposal | Tratamiento del cáncer | spa |
dc.subject.proposal | Marcadores moleculares | spa |
dc.subject.proposal | Nanotechnology | eng |
dc.subject.proposal | Carcinoma Cancer | eng |
dc.subject.proposal | Cancer Diagnosis | eng |
dc.subject.proposal | Cancer Treatment | eng |
dc.subject.proposal | Molecular Markers | eng |
dc.subject.proposal | Trabajos de grado de Biología | spa |
dc.title | Nanotecnología aplicada al diagnóstico y tratamiento del cáncer tipo carcinoma | spa |
dc.type | bachelor thesis | |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.local | Trabajo de grado | |
dc.type.version | info:eu-repo/semantics/publishedVersion |